SOURCE SEPARATION : PRINCIPLES , CURRENT ADVANCES AND APPLICATIONS

This paper is a survey on the source separation problem, and on methods used for solving this problem. In a blind context,i.e. without information about the sources but their mutual independence, methods are based on Independent Component Analysis (ICA). On the contrary, using priors on sources, one can developed semi-blind approaches which are very efficient and often much more simpler. Current advances aim to take into account various priors like positivity or sparsity. This paper will finish with sketches of source separation applications which will give practical examples.

[1]  A. Yeredor,et al.  Separation of polynomial post non-linear mixtures of discrete sources , 2005, IEEE/SP 13th Workshop on Statistical Signal Processing, 2005.

[2]  Ali Mohammad-Djafari,et al.  Application of Bayesian non-negative source separation to mixture analysis in spectroscopy , 2004 .

[3]  Christine Serviere,et al.  BLIND SEPARATION OF CONVOLUTIVE AUDIO MIXTURES USING NONSTATIONARITY , 2003 .

[4]  Christian Jutten,et al.  A geometric approach for separating post non-linear mixtures , 2002, 2002 11th European Signal Processing Conference.

[5]  Christian Jutten,et al.  A general approach for mutual information minimization and its application to blind source separation , 2005, Signal Process..

[6]  Julio Ortega Lopera,et al.  Separation of sources: A geometry-based procedure for reconstruction of n-valued signals , 1995, Signal Process..

[7]  Erkki Oja,et al.  Independence: a new criterion for the analysis of the electromagnetic fields in the global brain? , 2000, Neural Networks.

[8]  D. Chakrabarti,et al.  A fast fixed - point algorithm for independent component analysis , 1997 .

[9]  C. Jutten,et al.  Improving semiconductor-based chemical sensor arrays using advanced algorithms for blind source separation , 2004, ISA/IEEE Sensors for Industry Conference, 2004. Proceedings the.

[10]  R. Liu,et al.  AMUSE: a new blind identification algorithm , 1990, IEEE International Symposium on Circuits and Systems.

[11]  Joos Vandewalle,et al.  Fetal electrocardiogram extraction by blind source subspace separation , 2000, IEEE Transactions on Biomedical Engineering.

[12]  Jean-Francois Cardoso,et al.  THE THREE EASY ROUTES TO INDEPENDENT COMPONENT ANALYSIS; CONTRASTS AND GEOMETRY , 2001 .

[13]  Adel Belouchrani Jean-Fran,et al.  Maximum likelihood source separation for discrete sources , 2007 .

[14]  Zhaoshui He,et al.  K-Subspace clustering and its application in sparse component analysis , 2005 .

[15]  Christian Jutten,et al.  Identifiability of post-nonlinear mixtures , 2005, IEEE Signal Processing Letters.

[16]  Ali Mohammad-Djafari,et al.  Bayesian source separation: beyond PCA and ICA , 2006, ESANN.

[17]  C. Jutten,et al.  What ICA Provides for ECG Processing: Application to Noninvasive Fetal ECG Extraction , 2006, 2006 IEEE International Symposium on Signal Processing and Information Technology.

[18]  J. Cardoso,et al.  An efficient technique for the blind separation of complex sources , 1993, [1993 Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics.

[19]  P. Comon,et al.  Blind separation of discrete sources , 1998, IEEE Signal Processing Letters.

[20]  Yannick Deville,et al.  A time-frequency blind signal separation method applicable to underdetermined mixtures of dependent sources , 2005, Signal Process..

[21]  Juha Karhunen,et al.  Advances in blind source separation (BSS) and independent component analysis (ICA) for nonlinear mixtures , 2004, Int. J. Neural Syst..

[22]  Michel Verleysen,et al.  Abdominal electrodes analysis by statistical processing for fetal eletrocardiogram extraction , 2004 .

[23]  Schuster,et al.  Separation of a mixture of independent signals using time delayed correlations. , 1994, Physical review letters.

[24]  G. Darmois,et al.  Analyse générale des liaisons stochastiques: etude particulière de l'analyse factorielle linéaire , 1953 .

[25]  C. Jutten,et al.  The Physical Meaning of Independent Components and Artifact Removal of Hyperspectral Data from Mars using ICA , 2006, Proceedings of the 7th Nordic Signal Processing Symposium - NORSIG 2006.

[26]  D. Donoho ON MINIMUM ENTROPY DECONVOLUTION , 1981 .

[27]  Saeid Sanei,et al.  Video assisted speech source separation , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[28]  Luís B. Almeida,et al.  MISEP -- Linear and Nonlinear ICA Based on Mutual Information , 2003, J. Mach. Learn. Res..

[29]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[30]  Dinh-Tuan Pham,et al.  Mutual information approach to blind separation of stationary sources , 2002, IEEE Trans. Inf. Theory.

[31]  Pierre Comon,et al.  Separation Of Sources Using Higher-Order Cumulants , 1989, Optics & Photonics.

[32]  Christian Jutten,et al.  Blind source separation for convolutive mixtures , 1995, Signal Process..

[33]  Rémi Gribonval,et al.  A survey of Sparse Component Analysis for blind source separation: principles, perspectives, and new challenges , 2006, ESANN.

[34]  Christian Jutten,et al.  Independent components analysis versus principal components analysis , 1988 .

[35]  Christian Jutten,et al.  Source separation based processing for integrated Hall sensor arrays , 2002 .

[36]  Andrzej Cichocki,et al.  Robust learning algorithm for blind separation of signals , 1994 .

[37]  Pierre Jallon,et al.  Second-Order Based Cyclic Frequency Estimates: The Case of Digital Communication Signals , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[38]  Jean-Francois Cardoso,et al.  Blind signal separation: statistical principles , 1998, Proc. IEEE.

[39]  Christian Jutten,et al.  Solving the indeterminations of blind source separation of convolutive speech mixtures , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[40]  S. Moussaoui,et al.  Non-negative source separation using the maximum likelihood approach , 2005, IEEE/SP 13th Workshop on Statistical Signal Processing, 2005.

[41]  Christian Jutten,et al.  On underdetermined source separation , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[42]  Massoud Babaiezadeh Malmiri On blind source separation in convolutive and nonlinear mixtures , 2002 .

[43]  Christian Jutten,et al.  Source separation in post-nonlinear mixtures , 1999, IEEE Trans. Signal Process..

[44]  Ehud Weinstein,et al.  Criteria for multichannel signal separation , 1994, IEEE Trans. Signal Process..

[45]  Allan Kardec Barros,et al.  independent , 2006, Gumbo Ya Ya.

[46]  F. Bonnaire,et al.  Modélisation des déplacements de barrages , 1997 .

[47]  Christian Jutten,et al.  Sparse ICA via cluster-wise PCA , 2006, Neurocomputing.

[48]  Philippe Loubaton,et al.  Blind equalization - case of an unknown symbol period , 2003, IEEE Trans. Signal Process..

[49]  Petr Tichavsky,et al.  Independent Component Analysis through Direct Estimation of the Mutual Information , 2000 .

[50]  R.N. Bracewell,et al.  Signal analysis , 1978, Proceedings of the IEEE.

[51]  Christian Jutten,et al.  A Geometrical algorithm for blind separation of sources , 1995 .

[52]  Adel Belouchrani,et al.  Maximum Likelihood Source Separation By the Expectation-Maximization Technique: Deterministic and St , 1995 .

[53]  Emmanuel Vincent,et al.  Musical source separation using time-frequency source priors , 2006, IEEE Transactions on Audio, Speech, and Language Processing.

[54]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[55]  Nathalie Delfosse,et al.  Adaptive blind separation of independent sources: A deflation approach , 1995, Signal Process..

[56]  Philippe Garat,et al.  Blind separation of mixture of independent sources through a quasi-maximum likelihood approach , 1997, IEEE Trans. Signal Process..

[57]  Kiyotoshi Matsuoka,et al.  A neural net for blind separation of nonstationary signals , 1995, Neural Networks.

[58]  M. Lennon,et al.  Spectral unmixing of hyperspectral images with the independent component analysis and wavelet packets , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[59]  Michael Zibulevsky,et al.  Underdetermined blind source separation using sparse representations , 2001, Signal Process..

[60]  Christian Jutten,et al.  Space or time adaptive signal processing by neural network models , 1987 .

[61]  J. J. Lacoume,et al.  Sources indentification: a solution based on the cumulants , 1988, Fourth Annual ASSP Workshop on Spectrum Estimation and Modeling.

[62]  Christian Jutten,et al.  Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture , 1991, Signal Process..

[63]  Patrik O. Hoyer,et al.  Non-negative sparse coding , 2002, Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing.

[64]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[65]  Pierre Comon Independent component analysis - a new concept? signal processing , 1994 .