Hybrid Methods for Unsteady Fluid Flow Problems in Complex Geometries

In this thesis, stable and efficient hybrid methods which combine high order finite difference methods and unstructured finite volume methods for time-dependent initial boundary value problems have ...

[1]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[2]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[3]  Kazuhiro Nakahashi,et al.  FDM-FEM zonal method for viscous flow computations over multiple-bodies , 1987 .

[4]  B. Strand Summation by parts for finite difference approximations for d/dx , 1994 .

[5]  W. Don,et al.  High order Hybrid central-WENO finite difference scheme for conservation laws , 2007 .

[6]  M. Giles,et al.  UNSFLO : a numerical method for the calculation of unsteady flow in turbomachinery , 1991 .

[7]  V. Chin,et al.  Two-Dimensional Euler Zonal Method Using Composite Structured and Unstructured Meshes , 1994 .

[8]  Magnus Svärd,et al.  Stability of finite volume approximations for the Laplacian operator on quadrilateral and triangular grids , 2004 .

[9]  H. Kreiss,et al.  Time-Dependent Problems and Difference Methods , 1996 .

[10]  Chi-Wang Shu,et al.  Different Formulations Of The Discontinuous Galerkin Method For The Viscous Terms , 2000 .

[11]  R B Roemer,et al.  Hybrid finite element-finite difference method for thermal analysis of blood vessels , 2000, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[12]  E. V. D. Weide,et al.  Stable and high-order accurate finite difference schemes on singular grids , 2022 .

[13]  Nikolaus A. Adams,et al.  A High-Resolution Hybrid Compact-ENO Scheme for Shock-Turbulence Interaction Problems , 1996 .

[14]  Magnus Svärd,et al.  Steady-State Computations Using Summation-by-Parts Operators , 2005, J. Sci. Comput..

[15]  David Gottlieb,et al.  Optimal time splitting for two- and three-dimensional navier-stokes equations with mixed derivatives , 1981 .

[16]  Jan Nordström,et al.  Finite volume methods, unstructured meshes and strict stability for hyperbolic problems , 2003 .

[17]  Jan Nordström,et al.  Conservative Finite Difference Formulations, Variable Coefficients, Energy Estimates and Artificial Dissipation , 2006, J. Sci. Comput..

[18]  D. Gottlieb,et al.  Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes , 1994 .

[19]  Magnus Svärd,et al.  Stable and Accurate Artificial Dissipation , 2004, J. Sci. Comput..

[20]  Jan Nordström,et al.  Boundary and Interface Conditions for High-Order Finite-Difference Methods Applied to the Euler and Navier-Stokes Equations , 1999 .

[21]  D. Gottlieb,et al.  A Stable and Conservative Interface Treatment of Arbitrary Spatial Accuracy , 1999 .

[22]  J. Oden,et al.  A discontinuous hp finite element method for convection—diffusion problems , 1999 .

[23]  D. Pullin,et al.  Hybrid tuned center-difference-WENO method for large eddy simulations in the presence of strong shocks , 2004 .

[24]  Jing Gong,et al.  A stable hybrid method for hyperbolic problems , 2006, J. Comput. Phys..

[25]  Magnus Svärd,et al.  Well-Posed Boundary Conditions for the Navier-Stokes Equations , 2005, SIAM J. Numer. Anal..

[26]  Jan Nordström,et al.  High-order finite difference methods, multidimensional linear problems, and curvilinear coordinates , 2001 .

[27]  K. Mattsson Accurate and stable finite volume operators for unstructured flow solvers , 2022 .

[28]  Krister Åhlander,et al.  Efficiency of a hybrid method for the wave equation , 2001 .

[29]  H. Kreiss,et al.  Finite Element and Finite Difference Methods for Hyperbolic Partial Differential Equations , 1974 .

[30]  I. Babuska,et al.  A DiscontinuoushpFinite Element Method for Diffusion Problems , 1998 .

[31]  Magnus Svärd,et al.  Stable artificial dissipation operators for finite volume schemes on unstructured grids , 2006 .

[32]  Magnus Svärd,et al.  On the order of accuracy for difference approximations of initial-boundary value problems , 2006, J. Comput. Phys..

[33]  Ken Mattsson,et al.  Boundary Procedures for Summation-by-Parts Operators , 2003, J. Sci. Comput..

[34]  J. Nordström,et al.  Summation by Parts Operators for Finite Difference Approximations of Second-Derivatives with Variable Coefficients , 2004, Journal of Scientific Computing.

[35]  Parviz Moin,et al.  CHIMPS: A high-performance scalable module for multi-physics simulations , 2006 .

[36]  B. Gustafsson The convergence rate for difference approximations to mixed initial boundary value problems , 1975 .

[37]  Magnus Svärd,et al.  Artificial Dissipation for Strictly Stable Finite Volume Methods on Unstructured Meshes , 2004 .