Active Boundary Annotation using Random MAP Perturbations

We address the problem of efficiently annotating labels of objects when they are structured. Often the distribution over labels can be described using a joint potential function over the labels for which sampling is provably hard but efficient maximum a-posteriori (MAP) solvers exist. In this setting we develop novel entropy bounds that are based on the expected amount of perturbation to the potential function that is needed to change MAP decisions. By reasoning about the entropy reduction and cost tradeoff, our algorithm actively selects the next annotation task. As an example of our framework we propose a boundary refinement task which can used to obtain pixelaccurate image boundaries much faster than traditional tools by focussing on parts of the image for refinement in a multi-scale manner.

[1]  Tamir Hazan,et al.  PAC-Bayesian approach for minimization of phoneme error rate , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[2]  Andreas Krause,et al.  Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies , 2008, J. Mach. Learn. Res..

[3]  Pushmeet Kohli,et al.  Learning an interactive segmentation system , 2010, ICVGIP '10.

[4]  Burr Settles,et al.  Active Learning Literature Survey , 2009 .

[5]  Ryan P. Adams,et al.  Randomized Optimum Models for Structured Prediction , 2012, AISTATS.

[6]  Zoubin Ghahramani,et al.  Collaborative Gaussian Processes for Preference Learning , 2012, NIPS.

[7]  Kristen Grauman,et al.  What's it going to cost you?: Predicting effort vs. informativeness for multi-label image annotations , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Tommi S. Jaakkola,et al.  Learning with Maximum A-Posteriori Perturbation Models , 2014, AISTATS.

[9]  George Papandreou,et al.  Perturb-and-MAP random fields: Using discrete optimization to learn and sample from energy models , 2011, 2011 International Conference on Computer Vision.

[10]  Raquel Urtasun,et al.  Latent Structured Active Learning , 2013, NIPS.

[11]  Dan Roth,et al.  Margin-Based Active Learning for Structured Output Spaces , 2006, ECML.

[12]  VekslerOlga,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001 .

[13]  Daphne Koller,et al.  Support Vector Machine Active Learning with Applications to Text Classification , 2000, J. Mach. Learn. Res..

[14]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[15]  H. Sebastian Seung,et al.  Selective Sampling Using the Query by Committee Algorithm , 1997, Machine Learning.

[16]  Subhransu Maji,et al.  Learning Efficient Random Maximum A-Posteriori Predictors with Non-Decomposable Loss Functions , 2013, NIPS.

[17]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[18]  Tamir Hazan,et al.  Tightening Fractional Covering Upper Bounds on the Partition Function for High-Order Region Graphs , 2012, UAI.

[19]  Adam Tauman Kalai,et al.  Analysis of Perceptron-Based Active Learning , 2009, COLT.

[20]  Anand D. Sarwate,et al.  On Measure Concentration of Random Maximum A-Posteriori Perturbations , 2013, ICML.

[21]  Mark Jerrum,et al.  Polynomial-Time Approximation Algorithms for the Ising Model , 1990, SIAM J. Comput..

[22]  Mark Huber,et al.  A bounding chain for Swendsen‐Wang , 2003, Random Struct. Algorithms.

[23]  Subhransu Maji,et al.  On Sampling from the Gibbs Distribution with Random Maximum A-Posteriori Perturbations , 2013, NIPS.

[24]  Luc Van Gool,et al.  Active MAP Inference in CRFs for Efficient Semantic Segmentation , 2013, 2013 IEEE International Conference on Computer Vision.

[25]  Eric Vigoda,et al.  A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries , 2004, JACM.

[26]  Daphne Koller,et al.  Active Learning for Parameter Estimation in Bayesian Networks , 2000, NIPS.

[27]  Thorsten Joachims,et al.  Online Structured Prediction via Coactive Learning , 2012, ICML.

[28]  Antonio Torralba,et al.  LabelMe: A Database and Web-Based Tool for Image Annotation , 2008, International Journal of Computer Vision.

[29]  John Langford,et al.  Agnostic active learning , 2006, J. Comput. Syst. Sci..

[30]  Hava T. Siegelmann,et al.  Active Information Retrieval , 2001, NIPS.

[31]  Leslie Ann Goldberg,et al.  The Complexity of Ferromagnetic Ising with Local Fields , 2006, Combinatorics, Probability and Computing.

[32]  Steve Hanneke,et al.  A bound on the label complexity of agnostic active learning , 2007, ICML '07.

[33]  Tommi S. Jaakkola,et al.  On the Partition Function and Random Maximum A-Posteriori Perturbations , 2012, ICML.

[34]  Fengshan Bai,et al.  Approximating partition functions of the two-state spin system , 2011, Inf. Process. Lett..

[35]  Deva Ramanan,et al.  Video Annotation and Tracking with Active Learning , 2011, NIPS.

[36]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[37]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[38]  David A. Cohn,et al.  Active Learning with Statistical Models , 1996, NIPS.

[39]  Tommi S. Jaakkola,et al.  Tightening LP Relaxations for MAP using Message Passing , 2008, UAI.

[40]  Vladimir Kolmogorov,et al.  Convergent Tree-Reweighted Message Passing for Energy Minimization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Kristen Grauman,et al.  Large-scale live active learning: Training object detectors with crawled data and crowds , 2011, CVPR.

[42]  Pietro Perona,et al.  Online crowdsourcing: Rating annotators and obtaining cost-effective labels , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops.

[43]  Patrick Pérez,et al.  Interactive Image Segmentation Using an Adaptive GMMRF Model , 2004, ECCV.

[44]  Pietro Perona,et al.  Strong supervision from weak annotation: Interactive training of deformable part models , 2011, 2011 International Conference on Computer Vision.

[45]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[46]  Tomoharu Iwata,et al.  Active Learning for Interactive Visualization , 2013, AISTATS.

[47]  Trevor Darrell,et al.  Active Learning with Gaussian Processes for Object Categorization , 2007, 2007 IEEE 11th International Conference on Computer Vision.