MicroRNAs in vascular and metabolic disease.

Recent findings demonstrated the importance of microRNAs (miRNAs) in the vasculature and the orchestration of lipid metabolism and glucose homeostasis. MiRNA networks represent an additional layer of regulation for gene expression that absorbs perturbations and ensures the robustness of biological systems. This function is very elegantly demonstrated in cholesterol metabolism where miRNAs reducing cellular cholesterol export are embedded in the very same genes that increase cholesterol synthesis. Often their alteration does not affect normal development but changes under stress conditions and in disease. A detailed understanding of the molecular and cellular mechanisms of miRNA-mediated effects on metabolism and vascular pathophysiology could pave the way for the development of novel diagnostic markers and therapeutic approaches. In the first part of this review, we summarize the role of miRNAs in vascular and metabolic diseases and explore potential confounding effects by platelet miRNAs in preclinical models of cardiovascular disease. In the second part, we discuss experimental strategies for miRNA target identification and the challenges in attributing miRNA effects to specific cell types and single targets.

[1]  Shujia Jiang,et al.  Ischemic Preconditioning Augments Survival of Stem Cells via miR-210 Expression by Targeting Caspase-8-associated Protein 2* , 2009, The Journal of Biological Chemistry.

[2]  M. Mayr,et al.  Profiling of circulating microRNAs: from single biomarkers to re-wired networks , 2011, Cardiovascular research.

[3]  Chunxiang Zhang,et al.  MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy? , 2007, The American journal of pathology.

[4]  Hsien-Da Huang,et al.  Flow-Dependent Regulation of Kruppel-Like Factor 2 Is Mediated by MicroRNA-92a. , 2011, Circulation.

[5]  R. Darnell,et al.  Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data , 2011, Nature Biotechnology.

[6]  A miR-thless perspective: how asymmetric dimethylarginine impairs the functions of angiogenic progenitor cells. , 2010, Circulation research.

[7]  J. Steitz,et al.  Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR , 2007, Proceedings of the National Academy of Sciences.

[8]  Chunxiang Zhang,et al.  The miR-143/145 Cluster Is a Novel Transcriptional Target of Jagged-1/Notch Signaling in Vascular Smooth Muscle Cells* , 2011, The Journal of Biological Chemistry.

[9]  R. Regazzi,et al.  Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs , 2008, Biological chemistry.

[10]  Alexander van Oudenaarden,et al.  Genome-wide dissection of microRNA functions and cotargeting networks using gene set signatures. , 2010, Molecular cell.

[11]  M. Turunen,et al.  Hypoxia induces microRNA miR‐210 in vitro and in vivo , 2008, FEBS letters.

[12]  S. Kauppinen,et al.  Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice. , 2010, The Journal of clinical investigation.

[13]  Chunxiang Zhang,et al.  MicroRNA-145, a Novel Smooth Muscle Cell Phenotypic Marker and Modulator, Controls Vascular Neointimal Lesion Formation , 2009, Circulation research.

[14]  Fabio Martelli,et al.  MicroRNA-210 Modulates Endothelial Cell Response to Hypoxia and Inhibits the Receptor Tyrosine Kinase Ligand Ephrin-A3* , 2008, Journal of Biological Chemistry.

[15]  Y. Suárez,et al.  MicroRNAs Are Necessary for Vascular Smooth Muscle Growth, Differentiation, and Function , 2010, Arteriosclerosis, thrombosis, and vascular biology.

[16]  A. Lund,et al.  Isolation of microRNA targets using biotinylated synthetic microRNAs. , 2007, Methods.

[17]  C. Burge,et al.  The Widespread Impact of Mammalian MicroRNAs on mRNA Repression and Evolution , 2005, Science.

[18]  T. Shioda,et al.  MicroRNA-33 and the SREBP Host Genes Cooperate to Control Cholesterol Homeostasis , 2010, Science.

[19]  S. Subramaniam,et al.  MicroRNA-21 targets peroxisome proliferators-activated receptor-α in an autoregulatory loop to modulate flow-induced endothelial inflammation , 2011, Proceedings of the National Academy of Sciences.

[20]  Manuel Mayr,et al.  Metabolomics: Ready for the Prime Time? , 2008, Circulation. Cardiovascular genetics.

[21]  Chunxiang Zhang,et al.  Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4. , 2010, Cardiovascular research.

[22]  K. Moore,et al.  MiR-33 Contributes to the Regulation of Cholesterol Homeostasis , 2010, Science.

[23]  S. Kauppinen,et al.  LNA-mediated microRNA silencing in non-human primates , 2008, Nature.

[24]  Nicholas T. Ingolia,et al.  Mammalian microRNAs predominantly act to decrease target mRNA levels , 2010, Nature.

[25]  T. Tuschl,et al.  MicroRNA-24 Regulates Vascularity After Myocardial Infarction , 2011, Circulation.

[26]  D. Iliopoulos,et al.  MicroRNA-370 controls the expression of MicroRNA-122 and Cpt1α and affects lipid metabolism[S] , 2010, Journal of Lipid Research.

[27]  Bairong Shen,et al.  Two Functional MicroRNA-126s Repress a Novel Target Gene p21-Activated Kinase 1 to Regulate Vascular Integrity in Zebrafish , 2011, Circulation research.

[28]  P. Tam Faculty Opinions recommendation of miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. , 2009 .

[29]  Y. Maehara,et al.  Spreds Are Essential for Embryonic Lymphangiogenesis by Regulating Vascular Endothelial Growth Factor Receptor 3 Signaling , 2007, Molecular and Cellular Biology.

[30]  M. Zavolan,et al.  MicroRNAs 103 and 107 regulate insulin sensitivity , 2011, Nature.

[31]  E. Olson,et al.  MicroRNAs add a new dimension to cardiovascular disease. , 2010, Circulation.

[32]  M. Mayr,et al.  Proteomics: a reality-check for putative stem cells. , 2011, Circulation research.

[33]  S. Itohara,et al.  Granuphilin molecularly docks insulin granules to the fusion machinery , 2005, The Journal of cell biology.

[34]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[35]  Daniel S. Ory,et al.  miR-33 links SREBP-2 induction to repression of sterol transporters , 2010, Proceedings of the National Academy of Sciences.

[36]  T. Thum,et al.  Identification of cardiovascular microRNA targetomes. , 2011, Journal of molecular and cellular cardiology.

[37]  Christophe Ladroue,et al.  Comparative Lipidomics Profiling of Human Atherosclerotic Plaques , 2011, Circulation. Cardiovascular genetics.

[38]  Oliver Hofmann,et al.  miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to "seedless" 3'UTR microRNA recognition elements. , 2009, Molecular cell.

[39]  Aaron N. Chang,et al.  Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. , 2011, The Journal of clinical investigation.

[40]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[41]  Chunxiang Zhang,et al.  A Necessary Role of miR-221 and miR-222 in Vascular Smooth Muscle Cell Proliferation and Neointimal Hyperplasia , 2009, Circulation research.

[42]  Ayellet V. Segrè,et al.  The Lin28/let-7 Axis Regulates Glucose Metabolism , 2011, Cell.

[43]  Jernej Ule,et al.  CLIP: a method for identifying protein-RNA interaction sites in living cells. , 2005, Methods.

[44]  P. Linsley,et al.  Comparison of different miR-21 inhibitor chemistries in a cardiac disease model. , 2011, The Journal of clinical investigation.

[45]  Chunxiang Zhang,et al.  MicroRNA Expression Signature and Antisense-Mediated Depletion Reveal an Essential Role of MicroRNA in Vascular Neointimal Lesion Formation , 2007, Circulation research.

[46]  Stefanie Dimmeler,et al.  MicroRNA-92a Controls Angiogenesis and Functional Recovery of Ischemic Tissues in Mice , 2009, Science.

[47]  T. Shibasaki,et al.  Noc2 is essential in normal regulation of exocytosis in endocrine and exocrine cells. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[48]  A. Hata,et al.  SMAD proteins control DROSHA-mediated microRNA maturation , 2008, Nature.

[49]  Xiaoping Du,et al.  Signaling During Platelet Adhesion and Activation , 2010, Arteriosclerosis, thrombosis, and vascular biology.

[50]  Grace X. Y. Zheng,et al.  MicroRNAs can generate thresholds in target gene expression , 2011, Nature Genetics.

[51]  E. Morrisey The magic and mystery of miR-21. , 2010, The Journal of clinical investigation.

[52]  E. Furth,et al.  Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster , 2006, Nature Genetics.

[53]  D. Catalucci,et al.  MicroRNA-133 Controls Vascular Smooth Muscle Cell Phenotypic Switch In Vitro and Vascular Remodeling In Vivo , 2011, Circulation research.

[54]  W. Rottbauer,et al.  MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts , 2008, Nature.

[55]  Carme Camps,et al.  MicroRNA-125a is over-expressed in insulin target tissues in a spontaneous rat model of Type 2 Diabetes , 2009, BMC Medical Genomics.

[56]  B. Davis-Dusenbery,et al.  Down-regulation of Krüppel-like Factor-4 (KLF4) by MicroRNA-143/145 Is Critical for Modulation of Vascular Smooth Muscle Cell Phenotype by Transforming Growth Factor-β and Bone Morphogenetic Protein 4* , 2011, The Journal of Biological Chemistry.

[57]  Qingbo Xu,et al.  Proteomic analysis reveals presence of platelet microparticles in endothelial progenitor cell cultures. , 2009, Blood.

[58]  Yao‐Hua Song,et al.  MicroRNA-221 regulates high glucose-induced endothelial dysfunction. , 2009, Biochemical and biophysical research communications.

[59]  Laura Mariani,et al.  MicroRNAs modulate the angiogenic properties of HUVECs. , 2006, Blood.

[60]  Jordan S. Pober,et al.  Dicer Dependent MicroRNAs Regulate Gene Expression and Functions in Human Endothelial Cells , 2007, Circulation research.

[61]  A. Hata,et al.  Induction of MicroRNA-221 by Platelet-derived Growth Factor Signaling Is Critical for Modulation of Vascular Smooth Muscle Phenotype* , 2009, Journal of Biological Chemistry.

[62]  Y. Dor,et al.  miRNAs control insulin content in pancreatic β‐cells via downregulation of transcriptional repressors , 2011, The EMBO journal.

[63]  J. Rakic,et al.  MicroRNA-21 Exhibits Antiangiogenic Function by Targeting RhoB Expression in Endothelial Cells , 2011, PloS one.

[64]  G. Rousseau,et al.  Existence of a microRNA pathway in anucleate platelets , 2009, Nature Structural &Molecular Biology.

[65]  R. Plasterk,et al.  The diverse functions of microRNAs in animal development and disease. , 2006, Developmental cell.

[66]  John McAnally,et al.  The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. , 2008, Developmental cell.

[67]  S. Schinner Alterations in MicroRNA Expression Contribute to Fatty Acid–Induced Pancreatic β-Cell Dysfunction , 2009 .

[68]  Derek J Van Booven,et al.  Reciprocal Regulation of Myocardial microRNAs and Messenger RNA in Human Cardiomyopathy and Reversal of the microRNA Signature by Biomechanical Support , 2009, Circulation.

[69]  Ciro Indolfi,et al.  The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease , 2009, Cell Death and Differentiation.

[70]  Rudolf Jaenisch,et al.  Targeted Deletion Reveals Essential and Overlapping Functions of the miR-17∼92 Family of miRNA Clusters , 2008, Cell.

[71]  D. Haber,et al.  Dual Role for Argonautes in MicroRNA Processing and Posttranscriptional Regulation of MicroRNA Expression , 2007, Cell.

[72]  Qingbo Xu,et al.  Proteomics Identifies Thymidine Phosphorylase As a Key Regulator of the Angiogenic Potential of Colony-Forming Units and Endothelial Progenitor Cell Cultures , 2008, Circulation research.

[73]  M. Mayr,et al.  Plasma MicroRNA Profiling Reveals Loss of Endothelial MiR-126 and Other MicroRNAs in Type 2 Diabetes , 2010, Circulation research.

[74]  C. Shaw,et al.  Platelet microRNA-mRNA coexpression profiles correlate with platelet reactivity. , 2010, Blood.

[75]  Ryan E. Temel,et al.  Inhibition of miR-33 a / b in non-human primates raises plasma HDL and lowers VLDL triglycerides , 2011 .

[76]  P. Oettgen,et al.  Ets-1 and Ets-2 Regulate the Expression of MicroRNA-126 in Endothelial Cells , 2010, Arteriosclerosis, thrombosis, and vascular biology.

[77]  Michael T. McManus,et al.  MicroRNA Expression Is Required for Pancreatic Islet Cell Genesis in the Mouse , 2007, Diabetes.

[78]  Mark Graham,et al.  miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. , 2006, Cell metabolism.

[79]  Daniel Herschlag,et al.  Systematic Identification of mRNAs Recruited to Argonaute 2 by Specific microRNAs and Corresponding Changes in Transcript Abundance , 2008, PloS one.

[80]  Scott A Gerber,et al.  Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis , 2008, Proceedings of the National Academy of Sciences.

[81]  Qingbo Xu,et al.  Short Communication: Asymmetric Dimethylarginine Impairs Angiogenic Progenitor Cell Function in Patients With Coronary Artery Disease Through a MicroRNA-21–Dependent Mechanism , 2010, Circulation research.

[82]  Ru-Fang Yeh,et al.  miR-126 regulates angiogenic signaling and vascular integrity. , 2008, Developmental cell.

[83]  Francesca Orso,et al.  microRNA-222 Controls Neovascularization by Regulating Signal Transducer and Activator of Transcription 5A Expression , 2010, Arteriosclerosis, thrombosis, and vascular biology.

[84]  H. Tsai,et al.  Labeled microRNA pull-down assay system: an experimental approach for high-throughput identification of microRNA-target mRNAs , 2009, Nucleic acids research.

[85]  D. R. Laybutt,et al.  Alterations in MicroRNA Expression Contribute to Fatty Acid–Induced Pancreatic β-Cell Dysfunction , 2008, Diabetes.

[86]  N. Aoki,et al.  The up-regulation of microRNA-335 is associated with lipid metabolism in liver and white adipose tissue of genetically obese mice. , 2009, Biochemical and biophysical research communications.

[87]  Anthony Gamst,et al.  Association of the Metabolic Syndrome With History of Myocardial Infarction and Stroke in the Third National Health and Nutrition Examination Survey , 2004, Circulation.

[88]  N. Rajewsky,et al.  A pancreatic islet-specific microRNA regulates insulin secretion , 2004, Nature.

[89]  P. Pandolfi,et al.  A ceRNA Hypothesis: The Rosetta Stone of a Hidden RNA Language? , 2011, Cell.

[90]  Hervé Seitz,et al.  Redefining MicroRNA Targets , 2009, Current Biology.

[91]  L. V. Van Laake,et al.  miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes , 2011, The Journal of experimental medicine.

[92]  Scott B. Dewell,et al.  Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP , 2010, Cell.

[93]  A. Abderrahmani,et al.  MicroRNA-9 Controls the Expression of Granuphilin/Slp4 and the Secretory Response of Insulin-producing Cells* , 2006, Journal of Biological Chemistry.

[94]  S. Lowe,et al.  A microRNA polycistron as a potential human oncogene , 2005, Nature.

[95]  Phillip A. Sharp,et al.  Emerging Roles for Natural MicroRNA Sponges , 2010, Current Biology.

[96]  G. Semenza Angiogenesis in ischemic and neoplastic disorders. , 2003, Annual review of medicine.

[97]  A. Silahtaroglu,et al.  Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver , 2007, Nucleic acids research.

[98]  J. Klein,et al.  Positive and negative roles of p85 alpha and p85 beta regulatory subunits of phosphoinositide 3-kinase in insulin signaling. , 2003, The Journal of biological chemistry.

[99]  Mihaela Zavolan,et al.  miR-375 maintains normal pancreatic α- and β-cell mass , 2009, Proceedings of the National Academy of Sciences.

[100]  J. Bauersachs,et al.  Biogenesis and Regulation of Cardiovascular MicroRNAs , 2011, Circulation Research.

[101]  E. Olson,et al.  microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. , 2008, Genes & development.

[102]  P. Quax,et al.  MicroRNA-126 modulates endothelial SDF-1 expression and mobilization of Sca-1(+)/Lin(-) progenitor cells in ischaemia. , 2011, Cardiovascular research.

[103]  John McAnally,et al.  MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. , 2009, Genes & development.

[104]  Stefanie Dimmeler,et al.  Members of the microRNA-17-92 cluster exhibit a cell-intrinsic antiangiogenic function in endothelial cells. , 2010, Blood.

[105]  R. Russell,et al.  Animal MicroRNAs Confer Robustness to Gene Expression and Have a Significant Impact on 3′UTR Evolution , 2005, Cell.

[106]  N. Baroukh,et al.  miR-375 Targets 3′-Phosphoinositide–Dependent Protein Kinase-1 and Regulates Glucose-Induced Biological Responses in Pancreatic β-Cells , 2008, Diabetes.

[107]  K. Fogarty,et al.  MicroRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis , 2010, Nature.

[108]  G. Condorelli,et al.  MicroRNA control of podosome formation in vascular smooth muscle cells in vivo and in vitro , 2010, The Journal of cell biology.

[109]  M. Civelek,et al.  MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro , 2010, Proceedings of the National Academy of Sciences.

[110]  N. Rajewsky,et al.  Silencing of microRNAs in vivo with ‘antagomirs’ , 2005, Nature.

[111]  T. Tuschl,et al.  Identification of Tissue-Specific MicroRNAs from Mouse , 2002, Current Biology.

[112]  Brian D Athey,et al.  New class of microRNA targets containing simultaneous 5'-UTR and 3'-UTR interaction sites. , 2009, Genome research.

[113]  Zhenyu Xuan,et al.  A biochemical approach to identifying microRNA targets , 2007, Proceedings of the National Academy of Sciences.

[114]  Derek J Van Booven,et al.  RISC RNA Sequencing for Context-Specific Identification of In Vivo MicroRNA Targets , 2011, Circulation research.

[115]  R. Burgoyne,et al.  The Rab-binding protein Noc2 is associated with insulin-containing secretory granules and is essential for pancreatic beta-cell exocytosis. , 2004, Molecular endocrinology.

[116]  Peter F Stadler,et al.  Molecular evolution of a microRNA cluster. , 2004, Journal of molecular biology.

[117]  Johanna Schneider,et al.  Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. , 2009, The Journal of clinical investigation.

[118]  E. Olson,et al.  Regulation of angiogenesis and choroidal neovascularization by members of microRNA-23∼27∼24 clusters , 2011, Proceedings of the National Academy of Sciences.

[119]  U. A. Ørom,et al.  MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. , 2008, Molecular cell.

[120]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[121]  D. Bartel,et al.  Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs , 2004, Nature Reviews Genetics.

[122]  I. Gérin,et al.  Roles for miRNA-378/378* in adipocyte gene expression and lipogenesis. , 2010, American journal of physiology. Endocrinology and metabolism.

[123]  B. Brüne,et al.  MicroRNA-27b Contributes to Lipopolysaccharide-mediated Peroxisome Proliferator-activated Receptor γ (PPARγ) mRNA Destabilization* , 2010, The Journal of Biological Chemistry.

[124]  J. Stenvang,et al.  Silencing of microRNA families by seed-targeting tiny LNAs , 2011, Nature Genetics.

[125]  Joshua T. Mendell,et al.  MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1 , 2008, Proceedings of the National Academy of Sciences.