Automatically determining symmetries of partial differential equations

A REDUCE package for determining the group of Lie symmetries of an arbitrary system of partial differential equations is described. It may be used both interactively and in a batch mode. In many cases the system finds the full group completely automatically. In some other cases there are a few linear differential equations of the determining system left the solution of which cannot be found automatically at present. If it is provided by the user, the infinitesimal generators of the symmetry group are returned.ZusammenfassungEs wird ein REDUCE-Programm zur Bestimmung der Symmetrien beliebiger Systeme von partiellen Differentialgleichungen beschrieben. Es kann sowohl interaktiv als auch im Batch-Betrieb verwendet werden. In vielen Fällen findet es die volle Symmetriegruppe vollständig automatisch. In einigen anderen Fällen bleiben einige lineare Differentialgleichungen des bestimmenden Systems übrig, dessen Lösung im Augenblick nicht automatisch gefunden werden kann. Falls sie vom Benutzer eingegeben werden, antwortet das System mit den infinitesimalen Generatoren der Symmetriegruppe.

[1]  Fritz Schwarz,et al.  A reduce package for determining lie symmetries of ordinary and partial differential equations , 1984 .

[2]  G. A. Miller,et al.  An Introduction to the Lie Theory of One-Parameter Groups , 1911 .

[3]  J. Gillis,et al.  Nonlinear Partial Differential Equations in Engineering , 1967 .

[4]  Fritz Schwarz,et al.  Automatically determining symmetries of ordinary differential equations , 1983, EUROCAL.

[5]  James M. Hill,et al.  Solution of Differential Equations by Means of One-parameter Groups , 1982 .

[6]  G. I. Barenblatt,et al.  Similarity, Self-Similarity and Intermediate Asymptotics , 1979 .

[7]  L. V. Ovsi︠a︡nnikov Group properties of differential equations , 1979 .

[8]  E. Kamke Differentialgleichungen : Lösungsmethoden und Lösungen , 1977 .

[9]  Leonard Eugene Dickson,et al.  Differential Equations from the Group Standpoint , 1924 .

[10]  W. Miller,et al.  Group analysis of differential equations , 1982 .

[11]  J. Cole,et al.  Similarity methods for differential equations , 1974 .

[12]  L. Sedov Similarity and Dimensional Methods in Mechanics , 1960 .

[13]  W. Chester Continuous Transformations and Differential Equations , 1977 .

[14]  J. E. Campbell Introductory treatise on Lie's theory of finite continuous transformation groups, , 2007 .

[15]  F. Schwarz Symmetries of the Two-Dimensional Korteweg-deVries Equation , 1982 .

[16]  A. G. Hansen Similarity analyses of boundary value problems in engineering , 1964 .

[17]  P. Olver Symmetry groups and group invariant solutions of partial differential equations , 1979 .