Silicon Organic Hybrid Technology—A Platform for Practical Nonlinear Optics

A cost-effective route to build electrically as well as optically controlled modulators in silicon photonics is reviewed. The technology enables modulation at bit rates beyond 100 Gbit/s. This platform relies on the well-established silicon-based complementary metal-oxide-semiconductor processing technology for fabricating silicon-on-insulator (SOI) waveguides, while an organic cladding layer adds the required nonlinearity. The strength of this hybrid technology is discussed, and two key devices in communications are exemplarily regarded in more detail. The first device demonstrates demultiplexing of a 120 Gbit/s signal by means of four-wave mixing in a slot-waveguide that has been filled with a highly nonlinear chi(3)-organic material. The second device is a 100 Gbit/s/1 V electrooptic modulator based on a slow-light SOI photonic crystal covered with a chi(2) -nonlinear organic material.

[1]  T. Shoji,et al.  Microphotonics devices based on silicon microfabrication technology , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[2]  K. Taira,et al.  Highly nonlinear bismuth oxide-based glass fibres for all-optical signal processing , 2002 .

[3]  Raluca Dinu,et al.  Broadband electro-optic polymer modulators with high electro-optic activity and low poling induced optical loss , 2008 .

[4]  Tymon Barwicz,et al.  Hitless-Reconfigurable and Bandwidth-Scalable Silicon Photonic Circuits for Telecom and Interconnect Applications , 2008, OFC/NFOEC 2008 - 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference.

[5]  Ivan Biaggio,et al.  A High‐Optical Quality Supramolecular Assembly for Third‐Order Integrated Nonlinear Optics , 2008 .

[6]  T. Baba,et al.  Very Compact Arrayed-Waveguide-Grating Demultiplexer Using Si Photonic Wire Waveguides , 2004 .

[7]  K. Taira,et al.  Highly-nonlinear bismuth oxide-based glass fibers for all-optical signal processing , 2002, Optical Fiber Communication Conference and Exhibit.

[8]  Juthika Basak,et al.  40 Gbit/s silicon optical modulator for highspeed applications , 2007 .

[9]  F. Diederich,et al.  All-optical high-speed signal processing with silicon–organic hybrid slot waveguides , 2009 .

[10]  Wolfgang Freude,et al.  High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. , 2008, Optics express.

[11]  Jingdong Luo,et al.  Terahertz all-optical modulation in a silicon–polymer hybrid system , 2006, Nature materials.

[12]  Paul D. Townsend,et al.  Waveguiding in spun films of soluble polydiacetylenes , 1988 .

[13]  Hyundai Park,et al.  A Hybrid AlGaInAs–Silicon Evanescent Amplifier , 2007, IEEE Photonics Technology Letters.

[14]  D. Van Thourhout,et al.  Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[15]  Shyqyri Haxha,et al.  Bandwidth estimation for ultra-high-speed lithium niobate modulators. , 2003, Applied optics.

[16]  C. Koos,et al.  Radiation Modes and Roughness Loss in High Index-Contrast Waveguides , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[17]  H. Hamann,et al.  Active control of slow light on a chip with photonic crystal waveguides , 2005, Nature.

[18]  Larry R. Dalton,et al.  Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V , 2008 .

[19]  Toshihiko Baba,et al.  Slow light in photonic crystals , 2008 .

[20]  Wolfgang Freude,et al.  100 Gbit/s / 1 V Optical Modulator with Slotted Slow-Light Polymer-Infiltrated Silicon Photonic Crystal , 2008 .

[21]  M D Pelusi,et al.  Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration. , 2007, Optics express.

[22]  Philippe Regreny,et al.  A photonic interconnect layer on CMOS , 2007 .

[23]  C. Koos,et al.  All-optical wavelength conversion at 42.7 Gbit/s in a 4 mm long silicon-organic hybrid waveguide , 2009, 2009 Conference on Optical Fiber Communication - incudes post deadline papers.

[24]  Yurii A. Vlasov,et al.  Silicon photonics for next generation computing systems , 2008 .

[25]  Koji Yamada,et al.  Microphotonics devices based on silicon microfabrication technology , 2003, The 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003. LEOS 2003..

[26]  Ivan Biaggio,et al.  A new class of organic donor-acceptor molecules with large third-order optical nonlinearities. , 2005, Chemical communications.

[27]  Hyundai Park,et al.  1310nm Silicon Evanescent Laser , 2007, 2007 4th IEEE International Conference on Group IV Photonics.

[28]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[29]  Y. Vlasov,et al.  Raman amplification in ultrasmall silicon-on-insulator wire waveguides. , 2004, Optics express.

[30]  T. Krauss,et al.  Systematic design of flat band slow light in photonic crystal waveguides. , 2008, Optics express.

[31]  M. Lipson,et al.  Signal regeneration using low-power four-wave mixing on silicon chip , 2008 .

[32]  P. Mamyshev All-optical data regeneration based on self-phase modulation effect , 1998, 24th European Conference on Optical Communication. ECOC '98 (IEEE Cat. No.98TH8398).

[33]  R. Norwood,et al.  Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients , 2007 .

[34]  Keren Bergman,et al.  Silicon Nano-Phoonic Interconnection Networks in Multicore Processor Systems , 2008 .

[35]  Wolfgang Freude,et al.  Silicon-on-Insulator Modulators for Next-Generation 100 Gbit/s-Ethernet , 2007 .

[36]  Ling Liao,et al.  Silicon Optical Modulator for High-speed Applications , 2007, 2007 4th IEEE International Conference on Group IV Photonics.

[37]  Michal Lipson,et al.  An exercise in self control , 2007 .

[38]  R. Claps,et al.  Silicon Raman amplifiers, lasers, and their applications , 2005 .

[39]  I. Day,et al.  Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength , 2002 .

[40]  F. Wise,et al.  Highly nonlinear As-S-Se glasses for all-optical switching. , 2002, Optics letters.

[41]  Oded Cohen,et al.  Mode-locked silicon evanescent lasers. , 2007, Optics express.

[42]  Jurgen Michel,et al.  Impedance matching vertical optical waveguide couplers for dense high index contrast circuits. , 2008, Optics express.

[43]  C. Koos,et al.  Silicon-Organic Hybrid (SOH) devices for nonlinear optical signal processing , 2008, 2008 10th Anniversary International Conference on Transparent Optical Networks.

[44]  Hon Ki Tsang,et al.  Time dependent density of free carriers generated by two photon absorption in silicon waveguides , 2007 .

[45]  C. Koos,et al.  Highly nonlinear silicon photonics slot waveguides without free carrier absorption related speed-limitations , 2008, 2008 34th European Conference on Optical Communication.

[46]  W. Freude,et al.  Microwave-Frequency Experiments Validate Optical Simulation Tools and Demonstrate Novel Dispersion-Tailored Photonic Crystal Waveguides , 2007, Journal of Lightwave Technology.

[47]  C Koos,et al.  Nonlinear silicon-on-insulator waveguides for all-optical signal processing. , 2007, Optics express.

[48]  Jacob Fage-Pedersen,et al.  Photonic crystal waveguides with semi-slow light and tailored dispersion properties. , 2006, Optics express.

[49]  J. Bowers,et al.  Electrically pumped hybrid AlGaInAs-silicon evanescent laser. , 2006, Optics express.

[50]  Thomas F. Krauss,et al.  Slow light for switching and nonlinear effects in SOI , 2008 .

[51]  H. Fetterman,et al.  Demonstration of 110 GHz electro-optic polymer modulators , 1997 .

[52]  Larry R. Dalton,et al.  Introduction to Organic Electronic and Optoelectronic Materials and Devices (Optical Science and Engineering Series) , 2008 .

[53]  Lukas Mutter,et al.  Linear and nonlinear optical properties of the organic crystal DSTMS , 2007 .

[54]  M. Lipson Guiding, modulating, and emitting light on Silicon-challenges and opportunities , 2005, Journal of Lightwave Technology.

[55]  M. Paniccia,et al.  Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides. , 2006, Optics express.

[56]  Wolfgang Freude,et al.  Highly-Nonlinear Silicon Photonics Slot Waveguide , 2008 .