Bead-bead interaction parameters in dissipative particle dynamics: relation to bead-size, solubility parameter, and surface tension.

Dissipative particle dynamics (DPD) is a mesoscale modeling method for simulating equilibrium and dynamical properties of polymers in solution. The basic idea has been around for several decades in the form of bead-spring models. A few years ago, Groot and Warren established an important link between DPD and the Flory-Huggins chi-parameter theory for polymer solutions. We revisit the Groot-Warren theory and investigate the DPD interaction parameters as a function of bead size. In particular, we show a consistent scheme of computing the interfacial tension in a segregated binary mixture. Results for three systems chosen for illustration are in excellent agreement with experimental results. This opens the door for determining DPD interactions using interfacial tension as a fitting parameter.

[1]  R. D. Groot,et al.  Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants. , 2001, Biophysical journal.

[2]  Joel H. Hildebrand,et al.  Solubility of Non-Electrolytes , 1936, Nature.

[3]  S. J. Mumby,et al.  Determination of .chi. from liquid-liquid phase data and the computation of phase diagrams for quasi-binary polymer solutions and blends , 1994 .

[4]  W. Kuhn,et al.  Beziehungen zwischen Molekülgröße, statistischer Molekülgestalt und elastischen Eigenschaften hochpolymerer Stoffe , 1936 .

[5]  A. G. Schlijper,et al.  Computer simulation of dilute polymer solutions with the dissipative particle dynamics method , 1995 .

[6]  Berend Smit,et al.  Phase behavior of monomeric mixtures and polymer solutions with soft interaction potentials , 2001 .

[7]  B. Eichinger,et al.  Cohesive properties of Ultem and related molecules from simulations , 2002 .

[8]  P. Flory Principles of polymer chemistry , 1953 .

[9]  P. Español,et al.  Statistical Mechanics of Dissipative Particle Dynamics. , 1995 .

[10]  J. Koelman,et al.  Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics , 1992 .

[11]  R. Roe,et al.  Molecular dynamics simulation of polymer liquid and glass. II. Short range order and orientation correlation , 1988 .

[12]  B. D. Olafson,et al.  Application of molecular simulation to derive phase diagrams of binary mixtures , 1992 .

[13]  Masao Doi,et al.  Introduction to Polymer Physics , 1996 .

[14]  P. B. Warren,et al.  DISSIPATIVE PARTICLE DYNAMICS : BRIDGING THE GAP BETWEEN ATOMISTIC AND MESOSCOPIC SIMULATION , 1997 .

[15]  H. Sun,et al.  COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds , 1998 .

[16]  J. M. Haile,et al.  Molecular dynamics simulation : elementary methods / J.M. Haile , 1992 .

[17]  P. Flory,et al.  Foundations of Rotational Isomeric State Theory and General Methods for Generating Configurational Averages , 1974 .