ESCRT machinery mediates selective microautophagy of endoplasmic reticulum in yeast

ER‐phagy, the selective autophagy of endoplasmic reticulum (ER), safeguards organelle homeostasis by eliminating misfolded proteins and regulating ER size. ER‐phagy can occur by macroautophagic and microautophagic mechanisms. While dedicated machinery for macro‐ER‐phagy has been discovered, the molecules and mechanisms mediating micro‐ER‐phagy remain unknown. Here, we first show that micro‐ER‐phagy in yeast involves the conversion of stacked cisternal ER into multilamellar ER whorls during microautophagic uptake into lysosomes. Second, we identify the conserved Nem1‐Spo7 phosphatase complex and the ESCRT machinery as key components for micro‐ER‐phagy. Third, we demonstrate that macro‐ and micro‐ER‐phagy are parallel pathways with distinct molecular requirements. Finally, we provide evidence that the ESCRT machinery directly functions in scission of the lysosomal membrane to complete the microautophagic uptake of ER. These findings establish a framework for a mechanistic understanding of micro‐ER‐phagy and, thus, a comprehensive appreciation of the role of autophagy in ER homeostasis.

[1]  T. Abraham,et al.  VPS37A directs ESCRT recruitment for phagophore closure , 2019, The Journal of cell biology.

[2]  T. Natsume,et al.  Intrinsically Disordered Protein TEX264 Mediates ER-phagy. , 2019, Molecular cell.

[3]  Vladimir Denic,et al.  TEX264 Is an Endoplasmic Reticulum-Resident ATG8-Interacting Protein Critical for ER Remodeling during Nutrient Stress. , 2019, Molecular cell.

[4]  Fan Zhou,et al.  Rab5-dependent autophagosome closure by ESCRT , 2019, The Journal of cell biology.

[5]  Yan G Zhao,et al.  Autophagosome maturation: An epic journey from the ER to lysosomes , 2018, The Journal of cell biology.

[6]  M. Molinari,et al.  A selective ER‐phagy exerts procollagen quality control via a Calnexin‐FAM134B complex , 2018, The EMBO journal.

[7]  W. Sundquist,et al.  Structures, Functions, and Dynamics of ESCRT-III/Vps4 Membrane Remodeling and Fission Complexes. , 2018, Annual review of cell and developmental biology.

[8]  J. Lippincott-Schwartz,et al.  Noncanonical autophagy at ER exit sites regulates procollagen turnover , 2018, Proceedings of the National Academy of Sciences.

[9]  T. Ushimaru,et al.  The TORC1-Nem1/Spo7-Pah1/lipin axis regulates microautophagy induction in budding yeast. , 2018, Biochemical and biophysical research communications.

[10]  I. Dikic,et al.  ER-phagy at a glance , 2018, Journal of Cell Science.

[11]  A. Brech,et al.  Starvation induces rapid degradation of selective autophagy receptors by endosomal microautophagy , 2018, The Journal of cell biology.

[12]  T. Herricks,et al.  ESCRT-III is required for scissioning new peroxisomes from the endoplasmic reticulum , 2018, The Journal of cell biology.

[13]  Y. Sakai,et al.  Three Distinct Types of Microautophagy Based on Membrane Dynamics and Molecular Machineries , 2018, BioEssays : news and reviews in molecular, cellular and developmental biology.

[14]  D. Muzzey,et al.  SHRED Is a Regulatory Cascade that Reprograms Ubr1 Substrate Specificity for Enhanced Protein Quality Control during Stress. , 2018, Molecular cell.

[15]  Matthew D. Smith,et al.  CCPG1 Is a Non-canonical Autophagy Cargo Receptor Essential for ER-Phagy and Pancreatic ER Proteostasis , 2017, Developmental cell.

[16]  Y. Maéda,et al.  Evidence for ESCRT- and clathrin-dependent microautophagy , 2017, The Journal of cell biology.

[17]  Srigokul Upadhyayula,et al.  Recruitment dynamics of ESCRT-III and Vps4 to endosomes and implications for reverse membrane budding , 2017, eLife.

[18]  A. Ballabio,et al.  Molecular definitions of autophagy and related processes , 2017, The EMBO journal.

[19]  S. Emr,et al.  ESCRTs function directly on the lysosome membrane to downregulate ubiquitinated lysosomal membrane proteins , 2017, eLife.

[20]  Marie-Lena I. E. Harwardt,et al.  Full length RTN3 regulates turnover of tubular endoplasmic reticulum via selective autophagy , 2017, eLife.

[21]  T. Fujimoto,et al.  Niemann-Pick type C proteins promote microautophagy by expanding raft-like membrane domains in the yeast vacuole , 2017, eLife.

[22]  Jean Salamero,et al.  eC-CLEM: Flexible Multidimensional Registration Software for Correlative Microscopies with Refined Accuracy Mapping , 2017, Microscopy and Microanalysis.

[23]  C. Lusk,et al.  Chm7 and Heh1 collaborate to link nuclear pore complex quality control with nuclear envelope sealing , 2016, The EMBO journal.

[24]  M. Peter,et al.  Translocon component Sec62 acts in endoplasmic reticulum turnover during stress recovery , 2016, Nature Cell Biology.

[25]  Johannes Schöneberg,et al.  Reverse-topology membrane scission by the ESCRT proteins , 2016, Nature Reviews Molecular Cell Biology.

[26]  S. Subramani,et al.  Mechanistic insights into selective autophagy pathways: lessons from yeast , 2016, Nature Reviews Molecular Cell Biology.

[27]  J. Hurley,et al.  ESCRTs are everywhere , 2015, The EMBO journal.

[28]  M. Dong,et al.  ESCRTs Cooperate with a Selective Autophagy Receptor to Mediate Vacuolar Targeting of Soluble Cargos. , 2015, Molecular cell.

[29]  H. Hirano,et al.  Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus , 2015, Nature.

[30]  I. Katona,et al.  Regulation of endoplasmic reticulum turnover by selective autophagy , 2015, Nature.

[31]  C. Kraft,et al.  The coordinated action of the MVB pathway and autophagy ensures cell survival during starvation , 2015, eLife.

[32]  M. Zhang,et al.  The Endosomal Protein CHARGED MULTIVESICULAR BODY PROTEIN1 Regulates the Autophagic Turnover of Plastids in Arabidopsis , 2015, Plant Cell.

[33]  P. Walter,et al.  ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery , 2014, Journal of Cell Science.

[34]  Chao-Wen Wang,et al.  A sterol-enriched vacuolar microdomain mediates stationary phase lipophagy in budding yeast , 2014, The Journal of cell biology.

[35]  S. Kohlwein,et al.  Lipid droplet autophagy in the yeast Saccharomyces cerevisiae , 2014, Molecular biology of the cell.

[36]  S. Emr,et al.  Molecular mechanisms of the membrane sculpting ESCRT pathway. , 2013, Cold Spring Harbor perspectives in biology.

[37]  W. Prinz,et al.  Direct imaging reveals stable, micrometer-scale lipid domains that segregate proteins in live cells , 2013, The Journal of cell biology.

[38]  Maitreya J. Dunham,et al.  The yeast Alix homolog Bro1 functions as a ubiquitin receptor for protein sorting into multivesicular endosomes. , 2013, Developmental cell.

[39]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[40]  N. Mizushima,et al.  The role of Atg proteins in autophagosome formation. , 2011, Annual review of cell and developmental biology.

[41]  L. Santambrogio,et al.  Microautophagy of cytosolic proteins by late endosomes. , 2011, Developmental cell.

[42]  K. Thorn,et al.  Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response , 2009, The Journal of cell biology.

[43]  Yoko Shibata,et al.  A Class of Dynamin-like GTPases Involved in the Generation of the Tubular ER Network , 2009, Cell.

[44]  C. Barlowe,et al.  Erv26p‐Dependent Export of Alkaline Phosphatase from the ER Requires Lumenal Domain Recognition , 2009, Traffic.

[45]  A. Yamamoto,et al.  Autophagic elimination of misfolded procollagen aggregates in the endoplasmic reticulum as a means of cell protection. , 2009, Molecular biology of the cell.

[46]  D. Lingwood,et al.  Generation of Cubic Membranes by Controlled Homotypic Interaction of Membrane Proteins in the Endoplasmic Reticulum* , 2009, Journal of Biological Chemistry.

[47]  A. Tong,et al.  Genetic and structural analysis of Hmg2p-induced endoplasmic reticulum remodeling in Saccharomyces cerevisiae. , 2008, Molecular biology of the cell.

[48]  D. Goldfarb,et al.  Piecemeal microautophagy of the nucleus requires the core macroautophagy genes. , 2008, Molecular biology of the cell.

[49]  A. Isaacs,et al.  Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease , 2007, The Journal of cell biology.

[50]  F. Wendler,et al.  ESCRTs and Fab1 Regulate Distinct Steps of Autophagy , 2007, Current Biology.

[51]  J. Hurley,et al.  Molecular Architecture and Functional Model of the Complete Yeast ESCRT-I Heterotetramer , 2007, Cell.

[52]  K. Weis,et al.  The role of the integral membrane nucleoporins Ndc1p and Pom152p in nuclear pore complex assembly and function , 2006, The Journal of cell biology.

[53]  T. Rapoport,et al.  A Class of Membrane Proteins Shaping the Tubular Endoplasmic Reticulum , 2006, Cell.

[54]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[55]  T. Noda,et al.  Starvation Triggers the Delivery of the Endoplasmic Reticulum to the Vacuole via Autophagy in Yeast , 2005, Traffic.

[56]  Michael Knop,et al.  A versatile toolbox for PCR‐based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes , 2004, Yeast.

[57]  M. Suico,et al.  Delta F508 CFTR pool in the endoplasmic reticulum is increased by calnexin overexpression. , 2003, Molecular biology of the cell.

[58]  J. Lippincott-Schwartz,et al.  Formation of stacked ER cisternae by low affinity protein interactions , 2003, The Journal of cell biology.

[59]  Markus Babst,et al.  Escrt-III: an endosome-associated heterooligomeric protein complex required for mvb sorting. , 2002, Developmental cell.

[60]  R. Lipowsky Domains and Rafts in Membranes – Hidden Dimensions of Selforganization , 2002, Journal of biological physics.

[61]  M. Baba,et al.  Paz2 and 13 other PAZ gene products regulate vacuolar engulfment of peroxisomes during micropexophagy , 2002, Genes to cells : devoted to molecular & cellular mechanisms.

[62]  Heinz Schwarz,et al.  Autophagic tubes: vacuolar invaginations involved in lateral membrane sorting and inverse vesicle budding. , 2000 .

[63]  Michael D. George,et al.  A protein conjugation system essential for autophagy , 1998, Nature.

[64]  P. Philippsen,et al.  Additional modules for versatile and economical PCR‐based gene deletion and modification in Saccharomyces cerevisiae , 1998, Yeast.

[65]  F. Vogel,et al.  Protein quality--a determinant of the intracellular fate of membrane-bound cytochromes P450 in yeast. , 1997, DNA and cell biology.

[66]  S Falkow,et al.  Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in Candida albicans. , 1997, Microbiology.

[67]  C. J. Roberts,et al.  Different subcellular localization of Saccharomyces cerevisiae HMG-CoA reductase isozymes at elevated levels corresponds to distinct endoplasmic reticulum membrane proliferations. , 1996, Molecular biology of the cell.

[68]  D. Galbraith,et al.  Z-membranes: artificial organelles for overexpressing recombinant integral membrane proteins. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[69]  T. Noda,et al.  Novel system for monitoring autophagy in the yeast Saccharomyces cerevisiae. , 1995, Biochemical and biophysical research communications.

[70]  R. Müller,et al.  Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. , 1995, Gene.

[71]  S. Tsuboi,et al.  Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization , 1994, The Journal of cell biology.

[72]  L. Waskell,et al.  A model system for studying membrane biogenesis. Overexpression of cytochrome b5 in yeast results in marked proliferation of the intracellular membrane. , 1993, Journal of cell science.

[73]  D. Wiest,et al.  Membrane biogenesis during B cell differentiation: most endoplasmic reticulum proteins are expressed coordinately , 1990, The Journal of cell biology.

[74]  R. Sikorski,et al.  A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. , 1989, Genetics.

[75]  M. Basson,et al.  Increased amounts of HMG-CoA reductase induce "karmellae": a proliferation of stacked membrane pairs surrounding the yeast nucleus , 1988, The Journal of cell biology.

[76]  R. G. Anderson,et al.  Biogenesis of the crystalloid endoplasmic reticulum in UT-1 cells: evidence that newly formed endoplasmic reticulum emerges from the nuclear envelope , 1986, Journal of Cell Biology.

[77]  L. Wofsy,et al.  Intramembrane particles and the organization of lymphocyte membrane proteins , 1981, The Journal of cell biology.

[78]  E. Weibel,et al.  A MORPHOMETRIC STUDY OF THE REMOVAL OF PHENOBARBITAL-INDUCED MEMBRANES FROM HEPATOCYTES AFTER CESSATION OF TREATMENT , 1973, The Journal of cell biology.

[79]  Xian Zhang,et al.  Backgrounds , 2019, Analysis and Design of Delayed Genetic Regulatory Networks.

[80]  Andrea Picco,et al.  Precise, correlated fluorescence microscopy and electron tomography of lowicryl sections using fluorescent fiducial markers. , 2012, Methods in cell biology.

[81]  Charles Boone,et al.  16 High-Throughput Strain Construction and Systematic Synthetic Lethal Screening in Saccharomycescerevisiae , 2007 .

[82]  R. Müller,et al.  Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression. , 1994, Nucleic acids research.