Typology of centralised and decentralised visions for electricity infrastructure

Scientific and public controversies about the design of future electricity systems can be observed, including differences around centralised and decentralised approaches. Taking the German case as an example, we develop a typology of (de)centralisation that distinguishes between (1) infrastructure location (connectivity and proximity), and (2) infrastructure operation (flexibility and controllability). This typology is applied to two competing visions for the future of electricity infrastructure. A differentiated view of the various dimensions can contribute to the current debate, clarify visions for development paths, and inform infrastructure governance.

[1]  Pierluigi Mancarella,et al.  Distributed multi-generation: A comprehensive view , 2009 .

[2]  Morten Boje Blarke,et al.  SuperGrid or SmartGrid: Competing strategies for large-scale integration of intermittent renewables? , 2013 .

[3]  Brian Vad Mathiesen,et al.  From electricity smart grids to smart energy systems – A market operation based approach and understanding , 2012 .

[4]  J. Voss,et al.  Multi-regime dynamics in the analysis of sectoral transformation potentials: evidence from German utility sectors , 2008 .

[5]  Andreas C. Goldthau,et al.  Rethinking the governance of energy infrastructure: Scale, decentralization and polycentrism , 2014 .

[6]  Dheeraj Kumar Khatod,et al.  Optimal planning of distributed generation systems in distribution system: A review , 2012 .

[7]  F. Geels,et al.  The dynamics of transitions: a socio-technical perspective , 2010 .

[8]  Ruggero Schleicher-Tappeser,et al.  How renewables will change electricity markets in the next five years , 2012 .

[9]  D. Helm The European framework for energy and climate policies , 2014 .

[10]  Niki Frantzeskaki,et al.  Introduction to the special section: Infrastructures and transitions , 2010 .

[11]  M. V. Asselt,et al.  More evolution than revolution: transition management in public policy , 2001 .

[12]  Kari Alanne,et al.  Distributed energy generation and sustainable development , 2006 .

[13]  Rolf Witzmann,et al.  Improving Grid Transmission Capacity and Voltage Quality in Low-Voltage Grids with a High Proportion of Distributed Power Plants , 2011 .

[14]  Lennart Söder,et al.  Distributed generation : a definition , 2001 .

[15]  Sabine Erlinghagen,et al.  Smart grids and the transformation of the electricity sector: ICT firms as potential catalysts for sectoral change , 2012 .

[16]  F. Geels,et al.  Typology of sociotechnical transition pathways , 2007 .

[17]  C. R. Karger,et al.  Sustainability evaluation of decentralized electricity generation , 2009 .

[18]  Kornelia Konrad,et al.  Mapping expectations for system transformations: Lessons from Sustainability Foresight in German utility sectors , 2008 .

[19]  Adrian Smith,et al.  The governance of sustainable socio-technical transitions , 2005 .

[20]  F. Geels Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study , 2002 .

[21]  J. Lilliestam,et al.  Development of SuperSmart Grids for a more efficient utilisation of electricity from renewable sources , 2009 .

[22]  H. Rohracher,et al.  'Energy regions': The transformative power of regional discourses on socio-technical futures , 2010 .

[23]  A. Lovins,et al.  Soft energy paths: Toward a durable peace , 1977 .

[24]  Frans Berkhout,et al.  Normative expectations in systems innovation , 2006, Technol. Anal. Strateg. Manag..

[25]  Ronnie Belmans,et al.  Distributed generation: definition, benefits and issues , 2005 .

[26]  Matthias Wissner,et al.  The Smart Grid – A saucerful of secrets? , 2011 .

[27]  F. Krause,et al.  Energie-Wende : Wachstum und Wohlstand ohne Erdöl und Uran : ein Alternativ-Bericht des Öko-Instituts/Freiburg , 1980 .

[28]  Nick Eyre,et al.  Geographies of energy transition: Space, place and the low-carbon economy , 2013 .

[29]  Integrationsmanagement für Erneuerbare Energien – Dezentrale Koordination im Strommarkt der Zukunft , 2013 .

[30]  Frank W. Geels,et al.  Future electricity systems : visions, scenarios and transition pathways , 2012 .

[31]  Danny Pudjianto,et al.  Virtual power plant and system integration of distributed energy resources , 2007 .

[32]  Bernd Hirschl,et al.  Erneuerbare Energien-Politik : eine Multi-Level Policy-Analyse mit Fokus auf den deutschen Strommarkt , 2008 .

[33]  D. Bauknecht Transforming the Grid: Electricity System Governance and Network Integration of Distributed Generation , 2012 .

[34]  Chantal Ruppert-Winkel,et al.  Moving towards Energy Self-Sufficiency Based on Renewables: Comparative Case Studies on the Emergence of Regional Processes of Socio-Technical Change in Germany , 2012 .

[35]  David B. Richardson,et al.  Electric vehicles and the electric grid: A review of modeling approaches, Impacts, and renewable energy integration , 2013 .

[36]  Dominik Möst,et al.  Neue Anforderungen an optimierende Energiesystemmodelle für die Kraftwerkseinsatz- und Zubauplanung bei begrenzten Netzkapazitäten , 2009 .

[37]  Rüdiger Mautz,et al.  The Expansion of Renewable Energies in Germany between Niche Dynamics and System Integration – Opportunities and Restraints , 2007 .