The Abhyankar-Jung Theorem

We show that every quasi-ordinary Weierstrass polynomial $P(Z) = Z^d+a_1 (X) Z^{d-1}+...+a_d(X) \in \K[[X]][Z] $, $X=(X_1,..., X_n)$, over an algebraically closed field of characterisic zero $\K$, and satisfying $a_1=0$, is $\nu$-quasi-ordinary. That means that if the discriminant $\Delta_P \in \K[[X]]$ is equal to a monomial times a unit then the ideal $(a_i^{d!/i}(X))_{i=2,...,d}$ is principal and generated by a monomial. We use this result to give a constructive proof of the Abhyankar-Jung Theorem that works for any Henselian local subring of $\K[[X]]$ and the function germs of quasi-analytic families.

[1]  E. Bierstone,et al.  Arc-analytic functions , 1990 .

[2]  A. Rainer Quasianalytic multiparameter perturbation of polynomials and normal matrices , 2009, 0905.0837.

[3]  Heinrich W. E. Jung Darstellung der Funktionen eines algebraischen Körpers zweier unabhängigen Veränderlichen x, y in der Umgebung einer Stelle x = a, y = b. , 1908 .

[4]  Oscar Zariski,et al.  The Reduction of the Singularities of an Algebraic Surface , 1939 .

[5]  E. C. Titchmarsh,et al.  The theory of functions , 1933 .

[6]  広中 平祐 Introduction to the theory of infinitely near singular points , 1971 .

[7]  H. Sussmann Real analytic desingularization and subanalytic sets: an elementary approach , 1990 .

[8]  J. L. Vicente,et al.  On the Jung-Abhyankar theorem , 2004 .

[9]  J. Lipman Topological invariants of quasi-ordinary singularities , 1988 .

[10]  D. Gorenstein,et al.  Algebraic approximation of structures over complete local rings , 1969 .

[11]  ON QUASIANALYTIC LOCAL RINGS , 2005, math/0509273.

[12]  Toric embedded resolutions of quasi-ordinary hypersurface singularities , 2003, math/0306270.

[13]  Shreeram S. Abhyankar,et al.  On the Ramification of algebraic functions , 1955 .

[14]  Anatolii A. Logunov,et al.  Analytic functions of several complex variables , 1965 .

[15]  On the Abhyankar – Jung theorem for henselian k [ x ]-algebras of formal power series , 2009 .

[16]  Eberhard Freitag,et al.  Analytic Functions of Several Complex Variables , 2011 .

[17]  K. Nowak The Abhyankar-Jung theorem for excellent henselian subrings of formal power series , 2010 .

[18]  M. Zurro The Abhyankar-Jung theorem revisited , 1993 .

[19]  I. Luengo A new proof of the Jung—Abhyankar theorem , 1983 .

[20]  Introduction to Jung's method of resolution of singularities , 2007, math/0703353.

[21]  E. Bierstone,et al.  Semianalytic and subanalytic sets , 1988 .

[22]  A. Grothendieck,et al.  Éléments de géométrie algébrique , 1960 .

[23]  J. Risler,et al.  Real algebraic and semi-algebraic sets , 1990 .

[24]  M. Artin,et al.  On the solutions of analytic equations , 1968 .

[25]  P. D. González Pérez Singularit'es quasi-ordinaires toriques et poly`edre de Newton du discriminant , 2000 .