Evolution equations of second order with nonconvex potential and linear damping: existence via convergence of a full discretization

Global existence of solutions for a class of second-order evolution equations with damping is shown by proving convergence of a full discretization. The discretization combines a fully implicit time stepping with a Galerkin scheme. The operator acting on the zero-order term is assumed to be a potential operator where the potential may be nonconvex. A linear, symmetric operator is assumed to be acting on the first-order term. Applications arise in nonlinear viscoelasticity and elastodynamics.

[1]  J. Retherford Review: J. Diestel and J. J. Uhl, Jr., Vector measures , 1978 .

[2]  V. Thomée,et al.  The stability in _{} and ¹_{} of the ₂-projection onto finite element function spaces , 1987 .

[3]  H. Gajewski,et al.  Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen , 1974 .

[4]  H. Engler Weak solutions of a class of quasilinear hyperbolic integro-differential equations describing viscoelastic materials , 1991 .

[5]  J. Necas,et al.  Existence of global weak solutions to the dynamical problem for a three-dimensional elastic body with singular memory , 1993 .

[6]  Bernardo Cockburn,et al.  ON THE CONTINUITY IN BV(ß) OF THE L -PROJECTION INTO FINITE ELEMENT SPACES , 2010 .

[7]  Hartmut Pecher On global regular solutions of third order partial differential equations , 1980 .

[8]  Athanasios E. Tzavaras,et al.  Construction of entropy solutions for one dimensional elastodynamics via time discretisation , 2000 .

[9]  Andreas Prohl,et al.  Convergence of a Finite Element-Based Space-Time Discretization in Elastodynamics , 2008, SIAM J. Numer. Anal..

[10]  J. Lions,et al.  Problèmes aux limites non homogènes et applications , 1968 .

[11]  Jacques-Louis Lions,et al.  Some non-linear evolution equations , 1965 .

[12]  David Šiška,et al.  FULL DISCRETIZATION OF THE POROUS MEDIUM/FAST DIFFUSION EQUATION BASED ON ITS VERY WEAK FORMULATION , 2012 .

[13]  G. Friesecke,et al.  Dynamics as a mechanism preventing the formation of finer and finer microstructure , 1996 .

[14]  V. Thomée,et al.  The Stability in- L and W^ of the L2-Projection onto Finite Element Function Spaces , 2010 .

[15]  Christian Rohde,et al.  Global existence and uniqueness of solutions for a viscoelastic two-phase model with nonlocal capillarity , 2008 .

[16]  K. Rajagopal,et al.  On the effect of dissipation in shape-memory alloys , 2003 .

[17]  Zhi-Ming Ma,et al.  BOUNDARY PROBLEMS FOR FRACTIONAL LAPLACIANS , 2005 .

[18]  Mats Boman Estimates for the L2-Projection onto Continuous Finite Element Spaces in a Weighted Lp-Norm , 2006 .

[19]  Etienne Emmrich,et al.  Full discretisation of second-order nonlinear evolution equations: strong convergence and applications , 2011, Comput. Methods Appl. Math..

[20]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[21]  T. Roubíček Nonlinear partial differential equations with applications , 2005 .

[22]  Carsten Carstensen,et al.  Esaim: Mathematical Modelling and Numerical Analysis Young-measure Approximations for Elastodynamics with Non-monotone Stress-strain Relations , 2022 .

[23]  J. Clements,et al.  EXISTENCE THEOREMS FOR A QUASILINEAR EVOLUTION EQUATION , 1974 .

[24]  Carsten Carstensen,et al.  Time-Space Discretization of the Nonlinear Hyperbolic System \protect\mbox\boldmath\lowercase$u_tt = \operatornamediv (\sigma(\mbox\boldmath\uppercase$D$u)+ \mbox\boldmath\uppercase$D$u_t)$ , 2004 .

[25]  Gero Friesecke,et al.  Implicit time discretization and global existence for a quasi-linear evolution equation with nonconvex energy , 1997 .

[26]  Philip Holmes,et al.  On the dynamics of fine structure , 1991 .

[27]  Tomáš Roubíček,et al.  Visco‐elasto‐plastic model for martensitic phase transformation in shape‐memory alloys , 2002 .

[28]  Robert L. Pego,et al.  Phase transitions in one-dimensional nonlinear viscoelasticity: admissibility and stability , 1987 .

[29]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[30]  Olaf Steinbach,et al.  On the stability of the $L_2$ projection in fractional Sobolev spaces , 2001, Numerische Mathematik.

[31]  Rico Zacher Convergence to equilibrium for second order differential equations with weak damping of memory type , 2009, Advances in Differential Equations.

[32]  M. Griebel,et al.  Digital Object Identifier (DOI) 10.1007/s00161-003-0127-3 Original article , 2002 .

[33]  Etienne Emmrich,et al.  Convergence of a Time Discretisation for Doubly Nonlinear Evolution Equations of Second Order , 2010, Found. Comput. Math..

[34]  Etienne Emmrich,et al.  Doubly nonlinear evolution equations of second order: Existence and fully discrete approximation , 2011 .

[35]  C. Dafermos The mixed initial-boundary value problem for the equations of nonlinear one-dimensional viscoelasticity , 1969 .

[36]  Hans Engler,et al.  Global regular solutions for the dynamic antiplane shear problem in nonlinear viscoelasticity , 1989 .

[37]  Carsten Carstensen,et al.  Time-Space Discretization of the Nonlinear Hyperbolic System utt = div (\sigma(Du)+ Dut) , 2004, SIAM J. Numer. Anal..

[38]  Marc Oliver Rieger,et al.  Young Measure Solutions for Nonconvex Elastodynamics , 2003, SIAM J. Math. Anal..

[39]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[40]  J. Ball,et al.  Asymptotic behaviour and changes of phase in one-dimensional nonlinear viscoelasticity , 1982 .

[41]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[42]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[43]  J. Diestel,et al.  On vector measures , 1974 .

[44]  Sophia Demoulini Weak Solutions for a Class of Nonlinear Systems of Viscoelasticity , 2000 .

[45]  Tomáš Roubíček,et al.  Dissipative Evolution of Microstructure in Shape Memory Alloys , 2000 .

[46]  George E. Andrews,et al.  On the existence of solutions to the equation , 1980 .