Evolution equations of second order with nonconvex potential and linear damping: existence via convergence of a full discretization
暂无分享,去创建一个
[1] J. Retherford. Review: J. Diestel and J. J. Uhl, Jr., Vector measures , 1978 .
[2] V. Thomée,et al. The stability in _{} and ¹_{} of the ₂-projection onto finite element function spaces , 1987 .
[3] H. Gajewski,et al. Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen , 1974 .
[4] H. Engler. Weak solutions of a class of quasilinear hyperbolic integro-differential equations describing viscoelastic materials , 1991 .
[5] J. Necas,et al. Existence of global weak solutions to the dynamical problem for a three-dimensional elastic body with singular memory , 1993 .
[6] Bernardo Cockburn,et al. ON THE CONTINUITY IN BV(ß) OF THE L -PROJECTION INTO FINITE ELEMENT SPACES , 2010 .
[7] Hartmut Pecher. On global regular solutions of third order partial differential equations , 1980 .
[8] Athanasios E. Tzavaras,et al. Construction of entropy solutions for one dimensional elastodynamics via time discretisation , 2000 .
[9] Andreas Prohl,et al. Convergence of a Finite Element-Based Space-Time Discretization in Elastodynamics , 2008, SIAM J. Numer. Anal..
[10] J. Lions,et al. Problèmes aux limites non homogènes et applications , 1968 .
[11] Jacques-Louis Lions,et al. Some non-linear evolution equations , 1965 .
[12] David Šiška,et al. FULL DISCRETIZATION OF THE POROUS MEDIUM/FAST DIFFUSION EQUATION BASED ON ITS VERY WEAK FORMULATION , 2012 .
[13] G. Friesecke,et al. Dynamics as a mechanism preventing the formation of finer and finer microstructure , 1996 .
[14] V. Thomée,et al. The Stability in- L and W^ of the L2-Projection onto Finite Element Function Spaces , 2010 .
[15] Christian Rohde,et al. Global existence and uniqueness of solutions for a viscoelastic two-phase model with nonlocal capillarity , 2008 .
[16] K. Rajagopal,et al. On the effect of dissipation in shape-memory alloys , 2003 .
[17] Zhi-Ming Ma,et al. BOUNDARY PROBLEMS FOR FRACTIONAL LAPLACIANS , 2005 .
[18] Mats Boman. Estimates for the L2-Projection onto Continuous Finite Element Spaces in a Weighted Lp-Norm , 2006 .
[19] Etienne Emmrich,et al. Full discretisation of second-order nonlinear evolution equations: strong convergence and applications , 2011, Comput. Methods Appl. Math..
[20] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[21] T. Roubíček. Nonlinear partial differential equations with applications , 2005 .
[22] Carsten Carstensen,et al. Esaim: Mathematical Modelling and Numerical Analysis Young-measure Approximations for Elastodynamics with Non-monotone Stress-strain Relations , 2022 .
[23] J. Clements,et al. EXISTENCE THEOREMS FOR A QUASILINEAR EVOLUTION EQUATION , 1974 .
[24] Carsten Carstensen,et al. Time-Space Discretization of the Nonlinear Hyperbolic System \protect\mbox\boldmath\lowercase$u_tt = \operatornamediv (\sigma(\mbox\boldmath\uppercase$D$u)+ \mbox\boldmath\uppercase$D$u_t)$ , 2004 .
[25] Gero Friesecke,et al. Implicit time discretization and global existence for a quasi-linear evolution equation with nonconvex energy , 1997 .
[26] Philip Holmes,et al. On the dynamics of fine structure , 1991 .
[27] Tomáš Roubíček,et al. Visco‐elasto‐plastic model for martensitic phase transformation in shape‐memory alloys , 2002 .
[28] Robert L. Pego,et al. Phase transitions in one-dimensional nonlinear viscoelasticity: admissibility and stability , 1987 .
[29] J. Lions. Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .
[30] Olaf Steinbach,et al. On the stability of the $L_2$ projection in fractional Sobolev spaces , 2001, Numerische Mathematik.
[31] Rico Zacher. Convergence to equilibrium for second order differential equations with weak damping of memory type , 2009, Advances in Differential Equations.
[32] M. Griebel,et al. Digital Object Identifier (DOI) 10.1007/s00161-003-0127-3 Original article , 2002 .
[33] Etienne Emmrich,et al. Convergence of a Time Discretisation for Doubly Nonlinear Evolution Equations of Second Order , 2010, Found. Comput. Math..
[34] Etienne Emmrich,et al. Doubly nonlinear evolution equations of second order: Existence and fully discrete approximation , 2011 .
[35] C. Dafermos. The mixed initial-boundary value problem for the equations of nonlinear one-dimensional viscoelasticity , 1969 .
[36] Hans Engler,et al. Global regular solutions for the dynamic antiplane shear problem in nonlinear viscoelasticity , 1989 .
[37] Carsten Carstensen,et al. Time-Space Discretization of the Nonlinear Hyperbolic System utt = div (\sigma(Du)+ Dut) , 2004, SIAM J. Numer. Anal..
[38] Marc Oliver Rieger,et al. Young Measure Solutions for Nonconvex Elastodynamics , 2003, SIAM J. Math. Anal..
[39] W. McLean. Strongly Elliptic Systems and Boundary Integral Equations , 2000 .
[40] J. Ball,et al. Asymptotic behaviour and changes of phase in one-dimensional nonlinear viscoelasticity , 1982 .
[41] R. Temam,et al. Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .
[42] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .
[43] J. Diestel,et al. On vector measures , 1974 .
[44] Sophia Demoulini. Weak Solutions for a Class of Nonlinear Systems of Viscoelasticity , 2000 .
[45] Tomáš Roubíček,et al. Dissipative Evolution of Microstructure in Shape Memory Alloys , 2000 .
[46] George E. Andrews,et al. On the existence of solutions to the equation , 1980 .