An extended mathematical programming framework

Abstract Extended mathematical programs are collections of functions and variables joined together using specific optimization and complementarity primitives. This paper outlines a mechanism to describe such an extended mathematical program by means of annotating the existing relationships within a model to facilitate higher level structure identification. The structures, which often involve constraints on the solution sets of other models or complementarity relationships, can be exploited by modern large scale mathematical programming algorithms for efficient solution. A specific implementation of this framework is outlined that communicates structure from the GAMS modeling system to appropriate solvers in a computationally beneficial manner. Example applications are taken from chemical engineering.

[1]  Aharon Ben-Tal,et al.  Lectures on modern convex optimization , 1987 .

[2]  L. Biegler,et al.  Smoothing methods for complementarity problems in process engineering , 1999 .

[3]  David Kendrick,et al.  GAMS, a user's guide , 1988, SGNM.

[4]  L. Biegler,et al.  Nonsmooth dynamic simulation with linear programming based methods , 1997 .

[5]  R. Tyrrell Rockafellar,et al.  Extended Nonlinear Programming , 2000 .

[6]  T. Mexia,et al.  Author ' s personal copy , 2009 .

[7]  Jerome Bracken,et al.  Mathematical Programs with Optimization Problems in the Constraints , 1973, Oper. Res..

[8]  Erling D. Andersen,et al.  On implementing a primal-dual interior-point method for conic quadratic optimization , 2003, Math. Program..

[9]  Nikolaos V. Sahinidis,et al.  Global optimization of mixed-integer nonlinear programs: A theoretical and computational study , 2004, Math. Program..

[10]  S. Dirkse,et al.  Frontiers in Applied General Equilibrium Modeling: Mathematical Programs with Equilibrium Constraints: Automatic Reformulation and Solution via Constrained Optimization , 2002 .

[11]  Jonathan F. Bard,et al.  Practical Bilevel Optimization: Algorithms and Applications (Nonconvex Optimization and Its Applications) , 2006 .

[12]  Lorenz T. Biegler,et al.  Parameter estimation in metabolic flux balance models for batch fermentation—Formulation & Solution using Differential Variational Inequalities (DVIs) , 2006, Ann. Oper. Res..

[13]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[14]  Jonathan F. Bard,et al.  Practical Bilevel Optimization: Algorithms and Applications , 1998 .

[15]  Lorenz T. Biegler,et al.  MPEC problem formulations and solution strategies with chemical engineering applications , 2008, Comput. Chem. Eng..

[16]  Thomas F. Rutherford,et al.  Applied General Equilibrium Modeling with MPSGE as a GAMS Subsystem: An Overview of the Modeling Framework and Syntax , 1999 .

[17]  James R. Luedtke New Formulations for Optimization under Stochastic Dominance Constraints , 2008, SIAM J. Optim..

[18]  José Fortuny-Amat,et al.  A Representation and Economic Interpretation of a Two-Level Programming Problem , 1981 .

[19]  E. D. Giroux HEMP user's manual , 1973 .

[20]  I. Grossmann,et al.  Logic-based MINLP algorithms for the optimal synthesis of process networks , 1996 .

[21]  Donald Goldfarb,et al.  Second-order cone programming , 2003, Math. Program..

[22]  S. Dirkse,et al.  Mcplib: a collection of nonlinear mixed complementarity problems , 1995 .

[23]  Michael C. Ferris,et al.  A Pivotal Method for Affine Variational Inequalities , 1996, Math. Oper. Res..

[24]  Piet Reegen SigSpec User's Manual , 2010 .

[25]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[26]  M. Ferris,et al.  Complementarity problems in GAMS and the PATH solver 1 This material is based on research supported , 2000 .

[27]  Arthur W. Westerberg,et al.  Bilevel programming for steady-state chemical process design—I. Fundamentals and algorithms , 1990 .

[28]  R. E. Munn 14 – ENGINEERING AND ECONOMIC APPLICATIONS , 1970 .

[29]  Pascal Van Hentenryck The OPL optimization programming language , 1999 .

[30]  Iiro Harjunkoski,et al.  An extended cutting plane method for a class of non-convex MINLP problems , 1998 .

[31]  WächterAndreas,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006 .

[32]  M. Ferris,et al.  Complementarity Problems in GAMS and the , 1998 .

[33]  T. N. Srinivasan,et al.  Frontiers in Applied General Equilibrium Modeling , 2010 .

[34]  F. Giannessi,et al.  Nonlinear Optimization and Related Topics , 2000 .

[35]  A. Burgard,et al.  Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization , 2003, Biotechnology and bioengineering.

[36]  J. J. Bisschop,et al.  AIMMS : The Modeling System , 1993 .

[37]  Darinka Dentcheva,et al.  Optimization with Stochastic Dominance Constraints , 2003, SIAM J. Optim..

[38]  Ignacio E. Grossmann,et al.  LOGMIP: a disjunctive 0–1 nonlinear optimizer for process systems models , 1997 .

[39]  I. Grossmann,et al.  A combined penalty function and outer-approximation method for MINLP optimization : applications to distillation column design , 1989 .

[40]  Hans Frenk,et al.  High performance optimization , 2000 .

[41]  Michael C. Ferris,et al.  Expressing Complementarity Problems in an Algebraic Modeling Language and Communicating Them to Solvers , 1999, SIAM J. Optim..

[42]  Michael C. Ferris,et al.  Engineering and Economic Applications of Complementarity Problems , 1997, SIAM Rev..

[43]  Aldo R. Vecchietti,et al.  Modeling of discrete/continuous optimization problems: characterization and formulation of disjunctions and their relaxations , 2003, Comput. Chem. Eng..

[44]  R. Tyrrell Rockafellar,et al.  Lagrange Multipliers and Optimality , 1993, SIAM Rev..

[45]  A. Burgard,et al.  Optimization-based framework for inferring and testing hypothesized metabolic objective functions. , 2003, Biotechnology and bioengineering.

[46]  William R. Cluett,et al.  A Bilevel Optimization Algorithm to Identify Enzymatic Capacity Constraints in Metabolic Networks - Development and Application , 2008 .

[47]  A. Pakes,et al.  Markov-Perfect Industry Dynamics: A Framework for Empirical Work , 1995 .

[48]  J. Meeraus A. Bisschop,et al.  ON THE DEVELOPMENT OF A GENERAL ALGEBRAIC MODELING SYSTEM IN A STRATEGIC PLANNING ENVIRONMENT , 1982 .

[49]  Ian David Lockhart Bogle,et al.  Computers and Chemical Engineering , 2008 .

[50]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[51]  Knud D. Andersen,et al.  The Mosek Interior Point Optimizer for Linear Programming: An Implementation of the Homogeneous Algorithm , 2000 .

[52]  Ioannis P. Androulakis,et al.  A novel MINLP-based representation of the original complex model for predicting gasoline emissions , 2008, Comput. Chem. Eng..

[53]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[54]  Stephen J. Wright,et al.  Some properties of regularization and penalization schemes for MPECs , 2004, Optim. Methods Softw..

[55]  Paul I. Barton,et al.  Global solution of bilevel programs with a nonconvex inner program , 2008, J. Glob. Optim..

[56]  Brian W. Kernighan,et al.  AMPL: A Modeling Language for Mathematical Programming , 1993 .

[57]  R. Rockafellar Linear-quadratic programming and optimal control , 1987 .