New exact even-dimensional pure Lovelock interior metrics
暂无分享,去创建一个
[1] A. Khugaev,et al. Higher dimensional generalization of the Buchdahl-Vaidya-Tikekar model for a supercompact star , 2016, 1603.07118.
[2] D. Gross,et al. The Quartic Effective Action for the Heterotic String , 1987 .
[3] A. Chamseddine. Topological gauge theory of gravity in five and all odd dimensions , 1989 .
[4] D. Lovelock. The Einstein Tensor and Its Generalizations , 1971 .
[5] C. Uggla,et al. General Relativistic Stars: Linear Equations of State , 2000, gr-qc/0002021.
[6] L. Herrera,et al. Isotropic and anisotropic charged spheres admitting a one-parameter group of conformal motions , 1985 .
[7] A. Khugaev,et al. Uniform density static fluid sphere in Einstein-Gauss-Bonnet gravity and its universality , 2010, 1001.3922.
[8] J. Skea,et al. A realistic stellar model based on an ansatz of Duorah and Ray , 1989 .
[9] A. Chamseddine. Topological gravity and supergravity in various dimensions , 1990 .
[10] N. Dadhich,et al. Pure Lovelock black holes in dimensions d=3N+1 are stable , 2019, Physical Review D.
[11] N. Dadhich,et al. General solution for a relativistic star , 1997 .
[12] S. Maharaj,et al. Exact EGB models for spherical static perfect fluids , 2015, 1502.02219.
[13] N. Dadhich,et al. Probing pure Lovelock gravity by Nariai and Bertotti-Robinson solutions , 2012, 1210.1109.
[14] S. Deser,et al. String-generated gravity models. , 1985, Physical review letters.
[15] S. Maharaj,et al. New models for perfect fluids in EGB gravity , 2015 .
[16] N. Dadhich,et al. Dynamical structure of Pure Lovelock gravity , 2015, 1511.02541.
[17] H. Knutsen. On the Vaidya-Tikekar model for a neutron star , 1984 .
[18] N. Dadhich,et al. Thermodynamical universality of the Lovelock black holes , 2011, 1110.0673.
[19] H. Buchdahl. General Relativistic Fluid Spheres , 1959 .
[20] S. Hansraj,et al. Perfect fluid filled universe in odd dimensional pure Lovelock gravity , 2020 .
[21] N. Dadhich,et al. The Lovelock gravity in the critical spacetime dimension , 2012, 1202.4575.
[22] Wiltshire. Black holes in string-generated gravity models. , 1988, Physical review. D, Particles and fields.
[23] General Relativistic Stars : Polytropic Equations of State , 2000, gr-qc/0002022.
[24] S. Chandrasekhar. Dynamical Instability of Gaseous Masses Approaching the Schwarzschild Limit in General Relativity , 1964 .
[25] O. Klein,et al. Quantum Theory and Five-Dimensional Theory of Relativity. (In German and English) , 1926 .
[26] N. Dadhich,et al. Universality of isothermal fluid spheres in Lovelock gravity , 2015, 1510.07490.
[27] S. Hansraj. Generalized spheroidal spacetimes in 5-D Einstein–Maxwell–Gauss–Bonnet gravity , 2016, 1610.00922.
[28] J. Cariñena,et al. Conformal Killing vector fields and a virial theorem , 2014, 1410.2032.
[29] N. Dadhich,et al. On Lovelock analogs of the Riemann tensor , 2015, 1503.02889.
[30] Riccardo Barbieri,et al. B-decay anomalies in a composite leptoquark model , 2016, The European Physical Journal C.
[31] S. Maharaj,et al. Exact barotropic distributions in Einstein-Gauss-Bonnet gravity , 2015, 1512.08972.
[32] W. Saslaw,et al. An Isothermal Universe , 1996 .
[33] M. Jamil,et al. A class of solutions for anisotropic stars admitting conformal motion , 2010, 1003.0874.
[34] R. Maartens,et al. Conformally symmetric static fluid spheres , 1990 .
[35] A. Polyanin,et al. Handbook of Exact Solutions for Ordinary Differential Equations , 1995 .
[36] A. Khugaev,et al. Buchdahl–Vaidya–Tikekar model for stellar interior in pure Lovelock gravity , 2016, 1607.06229.
[37] S. Chandrasekhar. The Dynamical Instability of Gaseous Masses Approaching the Schwarzschild Limit in General Relativity. , 1964 .