New exact even-dimensional pure Lovelock interior metrics

While it is well known that N th-order pure Lovelock spacetimes of dimension do not admit bounded compact objects, this is not the case for the case. In the , pure Gauss–Bonnet gravity exact models for the Vaidya–Tikekar superdense star ansatz are investigated and new classes of metrics are discovered in terms of elementary functions. An astrophysical model of a stellar distribution that is consistent with the physical expectations extrapolated from four-dimensional gravity is exhibited. The isothermal sphere is re-considered and found to be inconsistent in pure Lovelock theory. Finally, we briefly consider the case of the third-order Lovelock polynomial term and several classes of exact solutions emerge.

[1]  A. Khugaev,et al.  Higher dimensional generalization of the Buchdahl-Vaidya-Tikekar model for a supercompact star , 2016, 1603.07118.

[2]  D. Gross,et al.  The Quartic Effective Action for the Heterotic String , 1987 .

[3]  A. Chamseddine Topological gauge theory of gravity in five and all odd dimensions , 1989 .

[4]  D. Lovelock The Einstein Tensor and Its Generalizations , 1971 .

[5]  C. Uggla,et al.  General Relativistic Stars: Linear Equations of State , 2000, gr-qc/0002021.

[6]  L. Herrera,et al.  Isotropic and anisotropic charged spheres admitting a one-parameter group of conformal motions , 1985 .

[7]  A. Khugaev,et al.  Uniform density static fluid sphere in Einstein-Gauss-Bonnet gravity and its universality , 2010, 1001.3922.

[8]  J. Skea,et al.  A realistic stellar model based on an ansatz of Duorah and Ray , 1989 .

[9]  A. Chamseddine Topological gravity and supergravity in various dimensions , 1990 .

[10]  N. Dadhich,et al.  Pure Lovelock black holes in dimensions d=3N+1 are stable , 2019, Physical Review D.

[11]  N. Dadhich,et al.  General solution for a relativistic star , 1997 .

[12]  S. Maharaj,et al.  Exact EGB models for spherical static perfect fluids , 2015, 1502.02219.

[13]  N. Dadhich,et al.  Probing pure Lovelock gravity by Nariai and Bertotti-Robinson solutions , 2012, 1210.1109.

[14]  S. Deser,et al.  String-generated gravity models. , 1985, Physical review letters.

[15]  S. Maharaj,et al.  New models for perfect fluids in EGB gravity , 2015 .

[16]  N. Dadhich,et al.  Dynamical structure of Pure Lovelock gravity , 2015, 1511.02541.

[17]  H. Knutsen On the Vaidya-Tikekar model for a neutron star , 1984 .

[18]  N. Dadhich,et al.  Thermodynamical universality of the Lovelock black holes , 2011, 1110.0673.

[19]  H. Buchdahl General Relativistic Fluid Spheres , 1959 .

[20]  S. Hansraj,et al.  Perfect fluid filled universe in odd dimensional pure Lovelock gravity , 2020 .

[21]  N. Dadhich,et al.  The Lovelock gravity in the critical spacetime dimension , 2012, 1202.4575.

[22]  Wiltshire Black holes in string-generated gravity models. , 1988, Physical review. D, Particles and fields.

[23]  General Relativistic Stars : Polytropic Equations of State , 2000, gr-qc/0002022.

[24]  S. Chandrasekhar Dynamical Instability of Gaseous Masses Approaching the Schwarzschild Limit in General Relativity , 1964 .

[25]  O. Klein,et al.  Quantum Theory and Five-Dimensional Theory of Relativity. (In German and English) , 1926 .

[26]  N. Dadhich,et al.  Universality of isothermal fluid spheres in Lovelock gravity , 2015, 1510.07490.

[27]  S. Hansraj Generalized spheroidal spacetimes in 5-D Einstein–Maxwell–Gauss–Bonnet gravity , 2016, 1610.00922.

[28]  J. Cariñena,et al.  Conformal Killing vector fields and a virial theorem , 2014, 1410.2032.

[29]  N. Dadhich,et al.  On Lovelock analogs of the Riemann tensor , 2015, 1503.02889.

[30]  Riccardo Barbieri,et al.  B-decay anomalies in a composite leptoquark model , 2016, The European Physical Journal C.

[31]  S. Maharaj,et al.  Exact barotropic distributions in Einstein-Gauss-Bonnet gravity , 2015, 1512.08972.

[32]  W. Saslaw,et al.  An Isothermal Universe , 1996 .

[33]  M. Jamil,et al.  A class of solutions for anisotropic stars admitting conformal motion , 2010, 1003.0874.

[34]  R. Maartens,et al.  Conformally symmetric static fluid spheres , 1990 .

[35]  A. Polyanin,et al.  Handbook of Exact Solutions for Ordinary Differential Equations , 1995 .

[36]  A. Khugaev,et al.  Buchdahl–Vaidya–Tikekar model for stellar interior in pure Lovelock gravity , 2016, 1607.06229.

[37]  S. Chandrasekhar The Dynamical Instability of Gaseous Masses Approaching the Schwarzschild Limit in General Relativity. , 1964 .