Thermoelectric properties of semimetals

Heavily doped semiconductors are by far the most studied class of materials for thermoelectric applications in the past several decades. They have Seebeck coefficient values which are 2-3 orders of magnitude higher than metals, making them attractive for thermoelectric applications. Semimetals generally demonstrate smaller Seebeck coefficient values due to lack of an energy bandgap. However, when there is a large asymmetry in their electron and hole effective masses, semimetals could have large Seebeck coefficient values. In this work, we study the band structure of a class of 18 semimetals using first principles calculations and calculate their Seebeck coefficient using the linearized Boltzmann equation within the constant relaxation time approximation. We conclude, despite the absence of the band gap, that some semimetals are good thermoelectrics with Seebeck coefficient values reaching up to 200 $\mu$V/K. We analyze the metrics often used to describe thermoelectric properties of materials, and show that the effective mass ratio is a key parameter resulting in high Seebeck coefficient values in semimetals.

[1]  M. Adams,et al.  High switching ratio variable-temperature solid-state thermal switch based on thermoelectric effects , 2019, International Journal of Heat and Mass Transfer.

[2]  S. V. Ovsyannikov,et al.  Thermoelectric properties and phase transitions of II–VI semiconductors at high pressure , 2007 .

[3]  V. Shubha,et al.  Transport properties under pressure in HgSe , 1982 .

[4]  R. Sehr,et al.  The optical properties of p-type Bi2Te3Sb2Te3 alloys between 2–15 microns , 1962 .

[5]  M. Søndergaard,et al.  Investigation of the correlation between stoichiometry and thermoelectric properties in a PtSb2 single crystal. , 2012, Dalton transactions.

[6]  S. Lehoczky,et al.  Temperature-dependent electrical properties of HgSe , 1974 .

[7]  G. J. Snyder,et al.  Yb14MnSb11: New High Efficiency Thermoelectric Material for Power Generation , 2006 .

[8]  G. Kresse,et al.  Accurate band structures and effective masses for InP, InAs, and InSb using hybrid functionals , 2009 .

[9]  M. Zebarjadi,et al.  Non-linear enhancement of thermoelectric performance of a TiSe2 monolayer due to tensile strain, from first-principles calculations , 2019, Journal of Materials Chemistry C.

[10]  Uher,et al.  CsBi(4)Te(6): A high-performance thermoelectric material for low-temperature applications , 2000, Science.

[11]  M. Zebarjadi,et al.  Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials , 2015 .

[12]  E. Toberer,et al.  Synthesis, Structure, and Thermoelectric Properties of α-Zn3Sb2 and Comparison to β-Zn13Sb10 , 2017 .

[13]  Zhiwei Zhou,et al.  Enhancement of thermoelectric properties of Yb-filled skutterudites by an Ni-Induced “core–shell” structure , 2015 .

[14]  J. Issi Low-temperature Transport-properties of the Group-v Semimetals , 1979 .

[15]  W. Hanke,et al.  Electronic structure of II B − VI semiconductors in the GW approximation , 2005 .

[16]  N. Singh,et al.  Thermoelectric performance of electron and hole doped PtSb2 , 2013, 1402.4256.

[17]  A. W. Lawson,et al.  Cyclotron Resonance and the Cohen Nonellipsoidal Nonparabolic Model for Bismuth. III. Experimental Results , 1973 .

[18]  Wenshuai Gao,et al.  Extremely Large Magnetoresistance in a Topological Semimetal Candidate Pyrite PtBi_{2}. , 2016, Physical review letters.

[19]  Nanoscale mechanisms for the reduction of heat transport in bismuth , 2016 .

[20]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[21]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[22]  G. Samsonidze,et al.  Accelerated Screening of Thermoelectric Materials by First‐Principles Computations of Electron–Phonon Scattering , 2015, 1511.08115.

[23]  P. Cui,et al.  Synthesis of micro/nanostructured p-type Bi0.4Sb1.6Te3 and its thermoelectrical properties , 2009 .

[24]  C. Franchini,et al.  Screened hybrid functional applied to 3d0→3d8transition-metal perovskites LaMO3(M = Sc–Cu): Influence of the exchange mixing parameter on the structural, electronic, and magnetic properties , 2012, 1209.0486.

[25]  G. Madsen,et al.  BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients , 2017, Comput. Phys. Commun..

[26]  Č. Drašar,et al.  Determination of the energy band gap of Bi2Se3 , 2017, Scientific Reports.

[27]  M. Dresselhaus,et al.  Lattice thermal conductivity of Bi, Sb, and Bi-Sb alloy from first principles , 2014 .

[28]  M. Kanatzidis,et al.  Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals , 2014, Nature.

[29]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[30]  Hohyun Lee,et al.  Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. , 2008, Nano letters.

[31]  M. Zebarjadi,et al.  Semi-metals as potential thermoelectric materials , 2018, Scientific Reports.

[32]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[33]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[34]  A. Goland,et al.  Thermoelectric Power of Gray Tin , 1956 .

[35]  Spencer L. Waldrop,et al.  Low-Temperature Thermoelectric Properties of PtSb2−xTex for Cryogenic Peltier Cooling Applications , 2015, Journal of Electronic Materials.

[36]  N. Karthikeyan,et al.  Thermoelectric power factor of La 0.9 M 0.1 FeO 3 (M = Ca and Ba) system: Structural, band gap and electrical transport evaluations , 2018 .

[37]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[38]  Xiujian Zhao,et al.  Ab initio study of structural and electronic properties of ternary alkali-metal-based semimetal compounds , 2014 .

[39]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[40]  P. Roushan,et al.  p -type Bi 2 Se 3 for topological insulator and low-temperature thermoelectric applications , 2009 .

[41]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[42]  T. Dietl,et al.  Electron scattering in HgSe , 1978 .

[43]  David J. Singh,et al.  BoltzTraP. A code for calculating band-structure dependent quantities , 2006, Comput. Phys. Commun..

[44]  A. Burkov,et al.  The effect of energy-dependent electron scattering on thermoelectric transport in novel topological semimetal CoSi , 2018, Journal of physics. Condensed matter : an Institute of Physics journal.

[45]  Aldo H. Romero,et al.  Topological phonons and thermoelectricity in triple-point metals , 2018, Physical Review Materials.

[46]  G. S. Cooper,et al.  The seebeck coefficients of antimony and arsenic single crystals , 1965 .

[47]  Jingjing Xu,et al.  Enhanced Figure-of-Merit in Se-Doped p-Type AgSbTe2 Thermoelectric Compound , 2010 .

[48]  G. A. Slack,et al.  Thermal Conductivity of II-VI Compounds and Phonon Scattering by Fe 2 + Impurities , 1972 .

[49]  H. Goldsmid,et al.  Introduction to Thermoelectricity , 2010 .

[50]  J. Loison,et al.  Preparation and characterization of Zn4Sb4 , 1985 .

[51]  Boris Kozinsky,et al.  BoltzWann: A code for the evaluation of thermoelectric and electronic transport properties with a maximally-localized Wannier functions basis , 2013, Comput. Phys. Commun..

[52]  Y. Guldner,et al.  Interband Γ 6 -->Γ 8 Magnetoabsorption in HgTe , 1973 .

[53]  O. Madelung Semiconductors: Data Handbook , 2003 .

[54]  S. Mahanti,et al.  Energy and temperature dependence of relaxation time and Wiedemann-Franz law on PbTe , 2010 .

[55]  Georg Kresse,et al.  Hybrid functionals applied to rare-earth oxides: The example of ceria , 2007 .

[56]  G. Kresse,et al.  Towards efficient band structure and effective mass calculations for III-V direct band-gap semiconductors , 2010 .

[57]  C. F. Gallo,et al.  Transport Properties of Bismuth Single Crystals , 1963 .

[58]  A. Sefat,et al.  Properties of binary transition-metal arsenides (TAs) , 2012, 1205.3947.

[59]  J. Wilkins,et al.  Accurate electronic properties for (Hg,Cd)Te systems using hybrid density functional theory , 2011 .

[60]  Xiaohui Hu,et al.  Doubling the ZT record of TiS2-based thermoelectrics by incorporation of ionized impurity scattering , 2018 .