Strain energy density of VO2-based microactuators

Abstract The strain, stress and strain energy density of a vanadium dioxide (VO 2 )-based microactuator were obtained from experimental curvature measurements as a function of temperature. The study revealed fully reversible strain and stress changes of up to −0.32% and −510 MPa, respectively, and a maximum strain energy density of approximately 8.1 × 10 5  J/m 3 through a temperature window of only 15 °C. The method for obtaining the strain energy density in this work is more accurate than the ones presented previously in the literature. The obtained values were validated with a temperature-dependent solid mechanics finite element analysis simulation. Microactuator performance was also studied inside its hysteretic region through a series of heating and cooling cycles, providing a more complete performance analysis of the device properties.

[1]  Hiroyuki Fujita,et al.  A micromachined impact microactuator driven by electrostatic force , 2003 .

[2]  Amarendra Atre Analysis of out-of-plane thermal microactuators , 2006 .

[3]  S. Timoshenko,et al.  Analysis of Bi-Metal Thermostats , 1925 .

[4]  Photothermal actuation of V O2:Cr-coated microcantilevers in air and aqueous media , 2012 .

[5]  Ernest J. Garcia,et al.  Surface micromachined microengine , 1995 .

[6]  E. Makino,et al.  Thin Film Shape Memory Alloy Microactuators , 2001 .

[7]  S. Ramanathan,et al.  Thermoelastic switching with controlled actuation in VO2 thin films , 2011 .

[8]  Hiroyuki Fujita,et al.  Scratch drive actuator with mechanical links for self-assembly of three-dimensional MEMS , 1997 .

[9]  O. Jeong,et al.  Fabrication and test of a thermopneumatic micropump with a corrugated p+ diaphragm , 2000 .

[10]  Yu-Chong Tai,et al.  A large-force, fully-integrated MEMS magnetic actuator , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[11]  Yasumasa Okada,et al.  Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K , 1984 .

[12]  Hans Zappe,et al.  Thermo-pneumatically actuated, membrane-based micro-mirror devices , 2006 .

[13]  Félix E. Fernández,et al.  A multiple-state micro-mechanical programmable memory , 2011 .

[14]  M. Swain,et al.  Characterization of mechanical properties of VO2 thin films on sapphire and silicon by ultra-microindentation , 1999 .

[15]  Michael Curt Elwenspoek,et al.  Comb-drive actuators for large displacements , 1996 .

[16]  T. Niklewski,et al.  Accurate X-ray determination of the lattice parameters and the thermal expansion coefficients of VO2 near the transition temperature , 1979 .

[17]  Tian Jian Lu,et al.  Institute of Physics Publishing Journal of Micromechanics and Microengineering Mems Actuators and Sensors: Observations on Their Performance and Selection for Purpose , 2022 .

[18]  Félix E. Fernández,et al.  Dynamics of photothermally driven VO2-coated microcantilevers , 2011 .

[19]  R. Cabrera,et al.  Phase transition behavior in microcantilevers coated with M1-phase VO2 and M2-phase VO2:Cr thin films , 2012 .

[20]  Byungkyu Kim,et al.  An earthworm-like micro robot using shape memory alloy actuator , 2006 .

[21]  E. Enikov,et al.  Analytical model for analysis and design of V-shaped thermal microactuators , 2005, Journal of Microelectromechanical Systems.

[22]  Elif Ertekin,et al.  Superelastic metal-insulator phase transition in single-crystal VO 2 nanobeams , 2009 .

[23]  N. J. Graf,et al.  A Soft-Polymer Piezoelectric Bimorph Cantilever-Actuated Peristaltic Micropump , 2009 .

[24]  Jari Juuti,et al.  Mechanically amplified large displacement piezoelectric actuators , 2005 .

[25]  Xiaobo Tan,et al.  Modeling and Inverse Compensation of Nonmonotonic Hysteresis in VO $_2$-Coated Microactuators , 2014, IEEE/ASME Transactions on Mechatronics.

[26]  Jin-Chern Chiou,et al.  Efficient magnetic microactuator with an enclosed magnetic core , 2002 .

[27]  T. Chin,et al.  Effect of Grain Curvature on Nano-Indentation Measurements of Thin Films , 2004 .

[28]  Xiaobo Tan,et al.  Monolithic fabrication of ionic polymer–metal composite actuators capable of complex deformation , 2010 .

[29]  W. Brantley Calculated elastic constants for stress problems associated with semiconductor devices , 1973 .

[30]  S. Senturia Microsystem Design , 2000 .

[31]  Gregory T. A. Kovacs,et al.  Characterization Of Multi-segment Organic Thermal Actuators , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[32]  Armando Rúa,et al.  Bending in VO2-coated microcantilevers suitable for thermally activated actuators , 2010 .

[33]  Sang-Gook Kim,et al.  Large-strain, piezoelectric, in-plane micro-actuator , 2004, 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest.

[34]  G. K. Ananthasuresh,et al.  Comprehensive thermal modelling and characterization of an electro-thermal-compliant microactuator , 2001 .

[35]  G. Alici,et al.  Pushing the Limits for Microactuators Based on Electroactive Polymers , 2012, Journal of Microelectromechanical Systems.

[36]  Ok Chan Jeong,et al.  Fabrication of a thermopneumatic microactuator with a corrugated p+ silicon diaphragm , 2000 .

[37]  Bozhi Yang,et al.  A latchable microvalve using phase change of paraffin wax , 2007 .

[38]  Hao Jiang,et al.  Polymeric nanolayers as actuators for ultrasensitive thermal bimorphs. , 2006, Nano letters.

[39]  T. Kenny,et al.  Design of large deflection electrostatic actuators , 2003 .

[40]  Félix E. Fernández,et al.  Optoelectronic and all-optical multiple memory states in vanadium dioxide , 2010 .

[41]  Gursel Alici,et al.  Conducting polymer microactuators operating in air , 2009 .