Solid freeform fabrication of ceramics

In this review, the author suggests that solid freeform fabrication is an extension of conventional manufacturing technology (made possible by advances in computing and automated shaping machinery). That is, the basic unit operations and the layered-assembly strategy have long histories, what is new is the automation thereof. It is further suggested that the key process control variables that arise when SSF is applied to ceramics are of a character that is familiar to ceramic processing in general. It is speculated that thoughtful extension of green machining practices may erode the current position of assembly-based approaches to SFF. Lastly, one under-explored application area for SFF is identified as the production of test specimens with unique and highly-controlled microstructure for scientific testing.

[1]  Weiju Ren,et al.  Gelcast Tooling: Net Shape Casting and Green Machining , 1998 .

[2]  T. Chartier,et al.  Stereolithography for the fabrication of ceramic three‐ dimensional parts , 1998 .

[3]  Wyatt S. Newman,et al.  Computer-aided manufacturing of laminated engineering materials , 1996 .

[4]  Roy W. Rice,et al.  Porosity of Ceramics: Properties and Applications , 1998 .

[5]  J. Halloran,et al.  Freeform fabrication of ceramics , 1999 .

[6]  Wyatt S. Newman,et al.  Al2O3 Ceramics Made by CAM-LEM (Computer-Aided Manufacturing of Laminated Engineering Materials) Technology , 1995 .

[7]  Noshir A. Langrana,et al.  Structural quality of parts processed by fused deposition , 1996 .

[8]  W. Scheller,et al.  Machining of Green Si3N4 Polymer Bonded Ceramic Materials , 1996 .

[9]  J. Cawley,et al.  Production Strategies for Production-Quality Parts for Aerospace Applications , 2000 .

[10]  J. Beaman,et al.  Titanium Casting Molds via Selective Laser Sintering , 1998 .

[11]  J. Cesarano,et al.  Recent Developments in Robocasting of Ceramics and Multimaterial Deposition , 1998 .

[12]  David B. Marshall,et al.  Rapid prototyping of functional ceramic composites , 1996 .

[13]  S. Danforth,et al.  Gelcast Molding with Rapid Prototyped Fugitive Molds , 1996 .

[14]  Allan J. Lightman,et al.  Direct fabrication of ceramics, CMCs by rapid prototyping , 1998 .

[15]  Michael J. Cima,et al.  Structural Ceramic Components by 3D Printing , 1993 .

[16]  Richard P. Chartoff,et al.  Automated Fabrication of Monolithic and Ceramic Matrix Composites via Laminated Object Manufacturing (LaM) , 1997 .

[17]  J. Francl,et al.  Thermal Conductivity: IX, Experimental Investigation of Effect of Porosity on Thermal Conductivity , 1954 .

[18]  K. Kendall,et al.  High-strength ceramics through colloidal control to remove defects , 1987, Nature.

[19]  V. Beltran,et al.  New method of assessing efflorescence , 1996 .

[20]  Scott McMillin,et al.  Desktop manifacturing : LOM vs pressing , 1994 .

[21]  Noshir A. Langrana,et al.  FDC, rapid fabrication of structural components , 1996 .

[22]  Richard G. Geyer,et al.  Electromechanical Resonances in Ceramic Capacitors and Their Use for Rapid Nondestructive Testing , 1989 .

[23]  John Evans,et al.  On the fabrication of ceramic windings , 1990 .

[24]  N. J. Clark,et al.  Forming, shaping, and working of high performance ceramics , 1988 .

[25]  Mohan Edirisinghe Solid freeform fabrication methods for engineering ceramics , 1998 .

[26]  Mark A. Rodriguez,et al.  Direct-Write Precision Resistors for Ceramic Packages , 1998 .

[27]  D. C. Kennard Book Reviews : INTERNATIONAL DICTIONARIES OF SCIENCE AND TECHNOLOGY - SOUND Edited by R. W. B. Stephens, Ph.D. Halsted Press (Division of John Wiley and Sons, New York) , 1977 .

[28]  R. Freer,et al.  Flexure strength of multilayer ceramic capacitors , 1999 .

[29]  Sang Joon John Lee,et al.  Layer position accuracy in powder‐based rapid prototyping , 1995 .

[30]  Joel W. Barlow,et al.  Selective laser sintering of alumina with polymer binders , 1995 .

[31]  F. Klocke,et al.  Selective Laser Sintering of Zirconium Silicate , 1998 .

[32]  Michael J. Cima,et al.  New Process and Materials Developments in 3-Dimensional Printing, 3DP ™ , 1998 .

[33]  Scott McMillin,et al.  Selective Laser Sintering and Fused Deposition Modeling Processes For Functional Ceramic Parts , 1995 .

[34]  M. Cima,et al.  High green density ceramic components fabricated by the slurry-based 3DP process , 1997 .

[35]  Hugh B. Denham,et al.  Mechanical behavior of robocast alumina , 1998 .

[36]  X. K. Wu,et al.  Acrylic binder for green machining , 1995 .

[37]  D. R. Barbour,et al.  Thermal conduction module: a high-performance multilayer ceramic package , 1982 .

[38]  Anna O. Shepard,et al.  Ceramics for the archaeologist , 1958 .

[39]  Ogbemi O. Omatete,et al.  Gelcasting: From laboratory development toward industrial production , 1997 .

[40]  J. Knickerbocker Overview of the glass-ceramic/copper substrate - a high-performance multilayer package for the 1990s , 1992 .

[41]  G. Graff,et al.  Freeform fabrication of ceramics , 1998 .

[42]  C. Griffin,et al.  Solid Freeform Fabrication of Functional Ceramic Components Using a Laminated Object Manufacturing Technique , 1994 .

[43]  John W. Halloran,et al.  Stereolithography of ceramics. , 1995 .

[44]  John W. Halloran,et al.  Stereolithography of ceramic suspensions , 1997 .