The ex-ante aggregation of opinions under uncertainty

This paper presents an analysis of the problem of aggregating preference orderings under subjective uncertainty. Individual preferences, or opinions, agree on the ranking of risky prospects, but are quite general because we do not specify the perception of ambiguity or the attitude towards it. A convexity axiom for the ex-ante preference characterizes a (collective) decision rule that can be interpreted as a compromise between the utilitarian and the Rawlsian criteria. The former is characterized by the independence axiom as in Harsanyi (1955). Existing results are special cases of our representation theorems, which also allow us to interpret Segal's (1987) two-stage approach to ambiguity as the ex-ante aggregation of (Bayesian) future selves' opinions.

[1]  J. Harsanyi Cardinal Welfare, Individualistic Ethics, and Interpersonal Comparisons of Utility , 1955 .

[2]  Mark J. Machina,et al.  Risk, Ambiguity, and the Rank-Dependence Axioms , 2009 .

[3]  Thibault Gajdos,et al.  Decisions with conflicting and imprecise information , 2012, Social Choice and Welfare.

[4]  T. Bewley Knightian decision theory. Part I , 2002 .

[5]  Nicolas Vieille,et al.  Aggregation of multiple prior opinions , 2011, J. Econ. Theory.

[6]  Richard C. Jeffrey,et al.  Preference Aggregation After Harsanyi , 2008 .

[7]  J. S. Wang Statistical Theory of Superlattices with Long-Range Interaction. I. General Theory , 1938 .

[8]  Alain Chateauneuf,et al.  On the use of capacities in modeling uncertainty aversion and risk aversion , 1991 .

[9]  A. Rustichini,et al.  Ambiguity Aversion, Robustness, and the Variational Representation of Preferences , 2006 .

[10]  P. Malliavin Infinite dimensional analysis , 1993 .

[11]  A. Rustichini,et al.  Representing preferences with a unique subjective state space: A corrigendum , 2007 .

[12]  P. Mongin Consistent Bayesian Aggregation , 1995 .

[13]  P. Reny,et al.  A Stone-Weierstrass Theorem without Closure under Suprema , 1992 .

[14]  Paolo Ghirardato,et al.  A more robust definition of multiple priors , 2010 .

[15]  Christopher P. Chambers,et al.  When does aggregation reduce risk aversion? , 2012, Games Econ. Behav..

[16]  Peter J. Hammond,et al.  Harsanyi’s Utilitarian Theorem: A Simpler Proof and Some Ethical Connotations , 1992 .

[17]  Eric Danan,et al.  Randomization vs. Selection: How to Choose in the Absence of Preference? , 2010, Manag. Sci..

[18]  Uzi Segal,et al.  Two Stage Lotteries Without the Reduction Axiom , 1990 .

[19]  I. Gilboa,et al.  Objective and Subjective Rationality in a Multiple Prior Model , 2010 .

[20]  Gil Riella,et al.  A class of incomplete and ambiguity averse preferences , 2011, J. Econ. Theory.

[21]  I. Ekeland,et al.  Infinite-Dimensional Optimization And Convexity , 1983 .

[22]  John A. Weymark,et al.  Measurement theory and the foundations of utilitarianism , 2005, Social Choice and Welfare.

[23]  Christopher P. Chambers,et al.  When does aggregation reduce uncertainty aversion , 2009 .

[24]  Alain Chateauneuf,et al.  Ambiguity through confidence functions , 2009 .

[25]  Massimo Marinacci,et al.  Rational preferences under ambiguity , 2011 .

[26]  Dov Samet,et al.  Utilitarian Aggregation of Beliefs and Tastes , 2004, Journal of Political Economy.

[27]  Olivier L’Haridon,et al.  Betting on Machina’s reflection example: an experiment on ambiguity , 2010 .

[28]  J Kosterlitz,et al.  Excess baggage. , 1993, National journal.

[29]  D. Ellsberg,et al.  Subjective Probability and Expected Utility without Additivity Author ( s ) : David Schmeidler Source : Econometrica , 1989 .

[30]  M. Marinacci,et al.  A Smooth Model of Decision Making Under Ambiguity , 2003 .

[31]  Zoltan Domotor,et al.  Ordered sum and tensor product of linear utility structures , 1979 .

[32]  Thibault Gajdos,et al.  Attitude toward imprecise information , 2008, J. Econ. Theory.

[33]  Thibault Gajdos,et al.  Representation and aggregation of preferences under uncertainty , 2008, J. Econ. Theory.

[34]  Uzi Segal,et al.  The Ellsberg Paradox and Risk Aversion: An Anticipated Utility Approach , 1987 .

[35]  D. Ellsberg Decision, probability, and utility: Risk, ambiguity, and the Savage axioms , 1961 .

[36]  Jean-Michel Grandmont,et al.  Continuity properties of a von Neumann-Morgenstern utility , 1972 .

[37]  Kyoungwon Seo,et al.  AMBIGUITY AND SECOND-ORDER BELIEF , 2009 .

[38]  Zhou’s aggregation theorems with multiple welfare weights , 2011 .

[39]  Philippe Mongin,et al.  The paradox of the Bayesian experts and state-dependent utility theory , 1998 .

[40]  Lin Zhou Harsanyi's Utilitarianism Theorems: General Societies , 1997 .

[41]  Laetitia Placido,et al.  Ambiguity models and the machina paradoxes , 2011 .

[42]  J. Schwartz,et al.  Linear Operators. Part I: General Theory. , 1960 .

[43]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[44]  Gil Riella,et al.  Second-order ambiguous beliefs , 2013 .

[45]  Larry G. Epstein,et al.  Quadratic Social Welfare Functions , 1992, Journal of Political Economy.

[46]  F. J. Anscombe,et al.  A Definition of Subjective Probability , 1963 .

[47]  Yoram Halevy Ellsberg Revisited: An Experimental Study , 2005 .

[48]  John A. Weymark,et al.  Interpersonal Comparisons of Well-being: A reconsideration of the Harsanyi–Sen debate on utilitarianism , 1991 .