Total correlations of the diagonal ensemble herald the many-body localization transition

The intriguing phenomenon of many-body localization (MBL) has attracted significant interest recently, but a complete characterization is still lacking. In this work, we introduce the total correlations, a concept from quantum information theory capturing multi-partite correlations, to the study of this phenomenon. We demonstrate that the total correlations of the diagonal ensemble provides a meaningful diagnostic tool to pin-down, probe, and better understand the MBL transition and ergodicity breaking in quantum systems. In particular, we show that the total correlations has sub-linear dependence on the system size in delocalized, ergodic phases, whereas we find that it scales extensively in the localized phase developing a pronounced peak at the transition. We exemplify the power of our approach by means of an exact diagonalization study of a Heisenberg spin chain in a disordered field.

[1]  V. Vedral,et al.  Entanglement in Many-Body Systems , 2007, quant-ph/0703044.

[2]  V. Vedral,et al.  Entanglement measures and purification procedures , 1997, quant-ph/9707035.

[3]  D. Huse,et al.  Entanglement spreading in a many-body localized system , 2014, 1404.5216.

[4]  Z Papić,et al.  Local conservation laws and the structure of the many-body localized states. , 2013, Physical review letters.

[5]  Koenraad M. R. Audenaert,et al.  Comparisons between quantum state distinguishability measures , 2012, Quantum Inf. Comput..

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  D. Huse,et al.  Many-body localization phase transition , 2010, 1010.1992.

[8]  Quasiparticle Lifetime in a Finite System: A Nonperturbative Approach , 1996, cond-mat/9609132.

[9]  A. Scardicchio,et al.  Anderson localization on the Bethe lattice: nonergodicity of extended States. , 2014, Physical review letters.

[10]  Maksym Serbyn,et al.  Universal slow growth of entanglement in interacting strongly disordered systems. , 2013, Physical review letters.

[11]  A. Winter,et al.  Randomizing Quantum States: Constructions and Applications , 2003, quant-ph/0307104.

[12]  E. Altman,et al.  Many-body localization in one dimension as a dynamical renormalization group fixed point. , 2012, Physical review letters.

[13]  A. Winter,et al.  Quantum, classical, and total amount of correlations in a quantum state , 2004, quant-ph/0410091.

[14]  Jozef B Uffink Compendium of the Foundations of Classical Statistical Physics , 2007 .

[15]  J. Eisert,et al.  Area laws for the entanglement entropy - a review , 2008, 0808.3773.

[16]  B. Bauer,et al.  Area laws in a many-body localized state and its implications for topological order , 2013, 1306.5753.

[17]  F. Alet,et al.  Many-body localization edge in the random-field Heisenberg chain , 2014, 1411.0660.

[18]  D. Reichman,et al.  Absence of diffusion in an interacting system of spinless fermions on a one-dimensional disordered lattice. , 2014, Physical review letters.

[19]  V. Vedral The role of relative entropy in quantum information theory , 2001, quant-ph/0102094.

[20]  R. Nandkishore,et al.  Many-Body Localization and Thermalization in Quantum Statistical Mechanics , 2014, 1404.0686.

[21]  E. Abrahams 50 Years of Anderson Localization , 2010 .

[22]  D. Huse,et al.  Localization of interacting fermions at high temperature , 2006, cond-mat/0610854.

[23]  A. Scardicchio,et al.  Integrals of motion in the many-body localized phase , 2014, 1406.2175.

[24]  T. Wei,et al.  Topological minimally entangled states via geometric measure , 2014, 1410.0484.

[25]  T. Prosen,et al.  Many-body localization in the Heisenberg XXZ magnet in a random field , 2007, 0706.2539.

[26]  A. Scardicchio,et al.  Ergodicity breaking in a model showing many-body localization , 2012, 1206.2342.

[27]  J. Eisert,et al.  Quantum many-body systems out of equilibrium , 2014, Nature Physics.

[28]  D. Basko,et al.  Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states , 2005, cond-mat/0506617.

[29]  Robert Sims,et al.  Entropy and the Quantum II , 2011 .

[30]  Isaac H. Kim,et al.  Constructing local integrals of motion in the many-body localized phase , 2014, 1407.8480.

[31]  A. H. Werner,et al.  Many-Body Localization Implies that Eigenvectors are Matrix-Product States. , 2014, Physical review letters.

[32]  Alessandro Silva,et al.  Colloquium: Nonequilibrium dynamics of closed interacting quantum systems , 2010, 1007.5331.

[33]  Joel E Moore,et al.  Unbounded growth of entanglement in models of many-body localization. , 2012, Physical review letters.

[34]  E. Altman,et al.  Dynamical Quantum Phase Transitions in Random Spin Chains , 2013, 1307.3256.

[35]  Page,et al.  Average entropy of a subsystem. , 1993, Physical review letters.

[36]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[37]  T. Paterek,et al.  The classical-quantum boundary for correlations: Discord and related measures , 2011, 1112.6238.

[38]  G. Parisi,et al.  Statistical distribution of the local purity in a large quantum system , 2011, 1106.5330.

[39]  Peter Reimann,et al.  Quantum versus classical foundation of statistical mechanics under experimentally realistic conditions. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  T. Paterek,et al.  Unified view of quantum and classical correlations. , 2009, Physical review letters.

[41]  J. Bardarson,et al.  Many-body localization in a disordered quantum Ising chain. , 2014, Physical review letters.

[42]  G. Parisi,et al.  Phase transitions of bipartite entanglement. , 2007, Physical review letters.

[43]  A. J. Short,et al.  Quantum mechanical evolution towards thermal equilibrium. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[45]  Rosario Fazio,et al.  Quantum quenches, thermalization, and many-body localization , 2010, 1006.1634.

[46]  M. Schreiber,et al.  Observation of many-body localization of interacting fermions in a quasirandom optical lattice , 2015, Science.