Computation theories: An axiomatic approach to recursion on general structures
暂无分享,去创建一个
[1] R. L. Goodstein,et al. Logic Colloquium '69 , 1972 .
[2] Yiannis N. Moschovakis,et al. Abstract first order computability. II , 1969 .
[3] Stephen G. Simpson. Post's Problem for Admissible Sets , 1974 .
[4] K. Jon Barwise,et al. Admissible Sets Over Models of Set Theory , 1974 .
[5] Peter G. Hinman,et al. Generalized Recursion Theory , 1974 .
[6] H. R. Strong. Algebraically generalized recursive function theory , 1968 .
[8] Thomas J. Grilliot. Inductive definitions and computability , 1971 .
[9] Gerald E. Sacks. The 1-Section of a Type n Object , 1974 .
[10] Yiannis N. Moschovakis,et al. Axioms for Computation Theories-First Draft , 1971 .
[11] Jon Barwise. Admissible Set Theory , 1975 .
[12] Yiannis N. Moschovakis,et al. Elementary induction on abstract structures , 1974 .
[13] IMBEDDING OF HIGHER TYPE THEORIES , 1974 .
[14] R. Platek. Foundations of recursion theory , 1966 .
[15] H. Friedman. Axiomatic Recursive Function Theory , 1971 .
[16] R. O. Gandy. General recursive functionals of finite type and hierarchies of functions , 1967 .
[17] Yiannis N. Moschovakis. On nonmonotone inductive definability , 1974 .
[18] Leo Harrington,et al. Selection in Abstract Recursion Theory , 1976, J. Symb. Log..
[19] Thomas J. Grilliot. Selection functions for recursive functionals , 1969, Notre Dame J. Formal Log..
[20] Yiannis N. Moschovakis,et al. Structural Characterizations of Classes of Relations , 1974 .
[21] Jens Erik Fenstad. ON AXIOMATIZING RECURSION THEORY , 1974 .
[22] Leo Harrington. The Superjump and the First Recursively Mahlo Ordinal , 1974 .
[23] Thomas J. Grilliot. Hierarchies Based on Objects of Finite Type , 1969, J. Symb. Log..
[24] Eric G. Wagner. Uniformly reflexive structures: On the nature of gödelizations and relative computability , 1969 .
[25] S. C. Kleene,et al. Recursive functionals and quantifiers of finite types. II , 1959 .
[26] Yiannis N. Moschovakis,et al. The next admissible set , 1971, Journal of Symbolic Logic.