Acetic Anhydride Polymerization as a Pathway to Functional Porous Organic Polymers and Their Application in Acid–Base Catalysis

Acetic anhydride (AA) is usually considered a stable molecule but is shown here to be able to polymerize in closed reactors to a cross-linked polyketone condensate. By using this chemistry, it was ...

[1]  W. Gong,et al.  Porous Organic Polymer with Thiourea Linkages (POP-TU): An Effective and Recyclable Organocatalyst for Michael Reaction. , 2020, ACS Applied Materials and Interfaces.

[2]  A. Cooper,et al.  Advances in Conjugated Microporous Polymers , 2020, Chemical reviews.

[3]  A. Bhaumik,et al.  A new triazine-thiophene based porous organic polymer as efficient catalyst for the synthesis of chromenes via multicomponent coupling and catalyst support for facile synthesis of HMF from carbohydrates , 2019, Molecular Catalysis.

[4]  Yuan Zhang,et al.  Pyrrolidine-based chiral porous polymers for heterogeneous organocatalysis in water , 2019, Polymer Chemistry.

[5]  K. Wilson,et al.  A spatially orthogonal hierarchically porous acid–base catalyst for cascade and antagonistic reactions , 2019, Nature Catalysis.

[6]  M. Antonietti,et al.  Photoredox Catalytic Organic Transformations using Heterogeneous Carbon Nitrides. , 2018, Angewandte Chemie.

[7]  L. Cavallo,et al.  Assessing the pKa -Dependent Activity of Hydroxyl Hydrogen Bond Donors in the Organocatalyzed Cycloaddition of Carbon Dioxide to Epoxides: Experimental and Theoretical Study , 2018, Advanced Synthesis & Catalysis.

[8]  Guangxing Li,et al.  Synthesis of glycerol carbonate from glycerol and dimethyl carbonate over DABCO embedded porous organic polymer as a bifunctional and robust catalyst , 2018, Applied Catalysis A: General.

[9]  Johanna Kleinekorte,et al.  Sustainable Conversion of Carbon Dioxide: An Integrated Review of Catalysis and Life Cycle Assessment. , 2017, Chemical reviews.

[10]  Reiner Sebastian Sprick,et al.  Structure-property relationships for covalent triazine-based frameworks: The effect of spacer length on photocatalytic hydrogen evolution from water , 2017 .

[11]  Markus Antonietti,et al.  “The Easier the Better” Preparation of Efficient Photocatalysts—Metastable Poly(heptazine imide) Salts , 2017, Advanced materials.

[12]  B. Tan,et al.  Hypercrosslinked porous polymer materials: design, synthesis, and applications. , 2017, Chemical Society reviews.

[13]  F. Xiao,et al.  Porous Ionic Polymers as a Robust and Efficient Platform for Capture and Chemical Fixation of Atmospheric CO2. , 2017, ChemSusChem.

[14]  S. Dai,et al.  Solvothermal synthesis of hierarchically nanoporous organic polymers with tunable nitrogen functionality for highly selective capture of CO2 , 2016 .

[15]  Faliang Gou,et al.  Cycloaddition of epoxides and CO2 catalyzed by bisimidazole-functionalized porphyrin cobalt(III) complexes , 2016 .

[16]  A. Coskun,et al.  Nanoporous Polymers Incorporating Sterically Confined N-Heterocyclic Carbenes for Simultaneous CO2 Capture and Conversion at Ambient Pressure , 2015 .

[17]  E. Giannelis,et al.  A combined salt–hard templating approach for synthesis of multi-modal porous carbons used for probing the simultaneous effects of porosity and electrode engineering on EDLC performance , 2015 .

[18]  Avelino Corma,et al.  Heterogeneous Catalysis for Tandem Reactions , 2014 .

[19]  C. Hawker,et al.  The emerging utility of ketenes in polymer chemistry , 2013 .

[20]  A. Corma,et al.  Designing bifunctional acid–base mesoporous hybrid catalysts for cascade reactions , 2013 .

[21]  Wei Wang,et al.  Covalent organic frameworks (COFs): from design to applications. , 2013, Chemical Society reviews.

[22]  Arne Thomas,et al.  Covalent triazine frameworks as heterogeneous catalysts for the synthesis of cyclic and linear carbonates from carbon dioxide and epoxides. , 2012, ChemSusChem.

[23]  Y. Zhang,et al.  "Bottom-up" embedding of the Jørgensen-Hayashi catalyst into a chiral porous polymer for highly efficient heterogeneous asymmetric organocatalysis. , 2012, Chemistry.

[24]  Arne Thomas,et al.  A microporous binol-derived phosphoric acid. , 2012, Angewandte Chemie.

[25]  Andrew I. Cooper,et al.  Nanoporous organic polymer networks , 2012 .

[26]  M. T. Gokmen,et al.  Porous Polymer Particles - A Comprehensive Guide to Synthesis, Characterization, Functionalization and Applications , 2012 .

[27]  Yugen Zhang,et al.  Functional porous organic polymers for heterogeneous catalysis. , 2012, Chemical Society reviews.

[28]  K. Horie,et al.  Terminology of polymers and polymerization processes in dispersed systems (IUPAC Recommendations 2011) , 2011 .

[29]  SonBinh T. Nguyen,et al.  Porous organic polymers in catalysis: Opportunities and challenges , 2011 .

[30]  Alexander M. Spokoyny,et al.  A “click-based” porous organic polymer from tetrahedral building blocks , 2011 .

[31]  Jong-Sung Yu,et al.  Ordered multimodal porous carbon with hierarchical nanostructure for high Li storage capacity and good cycling performance , 2010 .

[32]  Arne Thomas Functional materials: from hard to soft porous frameworks. , 2010, Angewandte Chemie.

[33]  Michael North,et al.  Synthesis of cyclic carbonates from epoxides and CO2 , 2010 .

[34]  S. Nguyen,et al.  Imine-Linked Microporous Polymer Organic Frameworks , 2010 .

[35]  Neil B. McKeown,et al.  Exploitation of Intrinsic Microporosity in Polymer-Based Materials , 2010 .

[36]  X. Yao,et al.  Tröger's base-functionalised organic nanoporous polymer for heterogeneous catalysis. , 2010, Chemical communications.

[37]  Wenchuan Wang,et al.  Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. , 2009, Angewandte Chemie.

[38]  C. Hertweck,et al.  The biosynthetic logic of polyketide diversity. , 2009, Angewandte Chemie.

[39]  P. Toy,et al.  Organic polymer supports for synthesis and for reagent and catalyst immobilization. , 2009, Chemical reviews.

[40]  Markus Antonietti,et al.  Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. , 2008, Angewandte Chemie.

[41]  P. Budd,et al.  Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. , 2006, Chemical Society reviews.

[42]  Michael O'Keeffe,et al.  Porous, Crystalline, Covalent Organic Frameworks , 2005, Science.

[43]  A. Puglisi,et al.  Polymer-supported organic catalysts. , 2003, Chemical reviews.

[44]  M. Davis,et al.  Design and preparation of organic-inorganic hybrid catalysts. , 2002, Chemical reviews.

[45]  R. Walton Subcritical solvothermal synthesis of condensed inorganic materials. , 2002, Chemical Society reviews.

[46]  Mark E. Davis,et al.  Rational Catalyst Design via Imprinted Nanostructured Materials , 1996 .

[47]  M. Kertész,et al.  Conformations and electronic structures of poly(ketene) and related conjugated polymers: reduction of the n-.pi.* band gap , 1991 .

[48]  G. Olah,et al.  Ionic polymerizations. 6. Friedel-Crafts dehydrohalogenative polymerization of acetyl and enolizable-substituted acetyl halides to polyketenes (poly(oxyacetylenes)) , 1989 .

[49]  K. C. Khemani,et al.  Poly(ketene) (PKT) , 1989 .

[50]  D. Ambrose,et al.  Vapour pressure, critical temperature, and critical pressure of acetic anhydride , 1987 .

[51]  K. Weissermel,et al.  Industrial Organic Chemistry , 1978 .

[52]  G. Natta,et al.  CRYSTALLINE POLYMERS OF DIMETHYLKETENE , 1960 .

[53]  C. D. Hurd,et al.  KETENE FROM ACETIC ACID , 1929 .

[54]  H. Staudinger Ketene, eine neue Körperklasse , 1905 .

[55]  Yuming Shi,et al.  Heterogeneous conversion of CO 2 into cyclic carbonates at ambient pressure catalyzed by ionothermal-derived meso-macroporous hierarchical poly(ionic liquid)s † , 2015 .

[56]  John P. Baltrus,et al.  Performance of immobilized tertiary amine solid sorbents for the capture of carbon dioxide , 2008 .

[57]  J. K.,et al.  Industrial Organic Chemistry , 1938, Nature.