A simple radix-4 Booth encoded modulo 2n+1 multiplier
暂无分享,去创建一个
[1] L. Sousa,et al. A universal architecture for designing efficient modulo 2/sup n/+1 multipliers , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.
[2] D. Bakalis,et al. Shifter circuits for {2n+1, 2n, 2n−1} RNS , 2009 .
[3] Stanislaw J. Piestrak. Design of squarers modulo A with low-level pipelining , 2002 .
[4] L. Leibowitz. A simplified binary arithmetic for the Fermat number transform , 1976 .
[5] Chip-Hong Chang,et al. Radix-8 Booth Encoded Modulo $2 ^{n} -1$ Multipliers With Adaptive Delay for High Dynamic Range Residue Number System , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.
[6] Reto Zimmermann,et al. Efficient VLSI implementation of modulo (2/sup n//spl plusmn/1) addition and multiplication , 1999, Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336).
[7] Giorgos Dimitrakopoulos,et al. Efficient diminished-1 modulo 2/sup n/ + 1 multipliers , 2005, IEEE Transactions on Computers.
[8] W. C. Miller,et al. An Efficient Tree Architecture for Modulo 2 n + 1 Multiplication Journal of VLSI Signal Processing , 1996 .
[9] Chip-Hong Chang,et al. A New Redundant Binary Booth Encoding for Fast $2^{n}$-Bit Multiplier Design , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.
[10] MaYutai. A Simplified Architecture for Modulo (2n + 1) Multiplication , 1998 .
[11] Akhilesh Tyagi,et al. A Reduced-Area Scheme for Carry-Select Adders , 1993, IEEE Trans. Computers.
[12] T VergosHaridimos,et al. Efficient Diminished-1 Modulo 2^n+1 Multipliers , 2005 .
[13] Chip-Hong Chang,et al. A Residue-to-Binary Converter for a New Five-Moduli Set , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.
[14] Yutai Ma. A Slimplified Architecture for Modulo (2n + 1) Multiplication , 1998, IEEE Trans. Computers.