Modulation of the gold particle-plasmon resonance by the metal-semiconductor transition of vanadium dioxide

We report experimental observations of relative blue-shifts in the particle?plasmon resonance of gold nanoparticles (Au NPs) covered with a vanadium dioxide (VO2) film as the VO2 material undergoes a semiconductor-to-metal transition at approximately 67??C. Although the extinction spectra of the Au NPs exhibit significant red-shifts in the presence of the surrounding VO2 film as compared to the same particles in air, the key result of this work is the dynamically controlled blue-shift of the Au-NP dipole resonance upon thermal switching of the VO2 overlayer from the semiconducting to the metallic state. We also report on the size and polarization dependence of the extinction spectra for both states, and present Mie theory calculations that confirm in a semi-quantitative way the observed trends in the VO2-induced modulation of the Au-NP plasmon resonance, and their origin in the VO2 dielectric function.

[1]  Younan Xia,et al.  Shape-Controlled Synthesis and Surface Plasmonic Properties of Metallic Nanostructures , 2005 .

[2]  Matteo Rini,et al.  Photoinduced phase transition in VO2 nanocrystals: ultrafast control of surface-plasmon resonance. , 2004, Optics letters.

[3]  R. Haglund,et al.  Second-harmonic generation from arrays of symmetric gold nanoparticles , 2006 .

[4]  Stephan Link,et al.  Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles , 1999 .

[5]  Charles R. Martin,et al.  Template Synthesized Nanoscopic Gold Particles: Optical Spectra and the Effects of Particle Size and Shape , 1994 .

[6]  P. Royer,et al.  Optical Extinction Spectroscopy of Oblate, Prolate and Ellipsoid Shaped Gold Nanoparticles: Experiments and Theory , 2006 .

[7]  Richard F. Haglund,et al.  Semiconductor to metal phase transition in the nucleation and growth of VO2 nanoparticles and thin films , 2004 .

[8]  George C. Schatz,et al.  Nanosphere Lithography: Effect of the External Dielectric Medium on the Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles , 1999 .

[9]  Richard F. Haglund,et al.  Optical properties of subwavelength hole arrays in vanadium dioxide thin films , 2006 .

[10]  G. Schatz,et al.  An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium , 1987 .

[11]  A. Bianconi,et al.  Critical behavior of the plasmon resonance at the metal-insulator transition in VO 2 , 1981 .

[12]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[13]  Cheng Sun,et al.  Nanopin plasmonic resonator array and its optical properties. , 2007, Nano letters.

[14]  M. Tazawa,et al.  Epitaxial growth of W-doped VO2/V2O3 multilayer on α-Al2O3(110) by reactive magnetron sputtering , 2000 .

[15]  Marie L. Sandrock and,et al.  Synthesis and Linear Optical Properties of Nanoscopic Gold Particle Pair Structures , 1999 .

[16]  David R. Smith,et al.  Local Refractive Index Dependence of Plasmon Resonance Spectra from Individual Nanoparticles , 2003 .

[17]  M. Maaza,et al.  Thermal induced tunability of surface plasmon resonance in Au–VO2 nano-photonics , 2005 .

[18]  U. Kreibig,et al.  Optical investigations of surfaces and interfaces of metal clusters , 1998 .

[19]  Bernhard Lamprecht,et al.  Optical properties of two interacting gold nanoparticles , 2003 .

[20]  David R. Smith,et al.  Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles , 2003 .

[21]  Richard F. Haglund,et al.  Modulated optical transmission of subwavelength hole arrays in metal-VO2 films , 2006 .

[22]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[23]  R. Corn,et al.  Surface plasmon resonance imaging measurements of ultrathin organic films. , 2003, Annual review of physical chemistry.

[24]  R. Stafford,et al.  Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[25]  George C. Schatz,et al.  Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach , 2003 .

[26]  C. N. Berglund,et al.  Optical Properties of V O 2 between 0.25 and 5 eV , 1968 .

[27]  N. Harris,et al.  Core-shell Nanoparticles With Self-regulating Plasmonic Functionality , 2007 .

[28]  Gang Xu,et al.  Surface plasmon resonance of silver nanoparticles on vanadium dioxide. , 2006, The journal of physical chemistry. B.