Abelian returns in Sturmian words
暂无分享,去创建一个
[1] Symbolic dynamics , 2008, Scholarpedia.
[2] Jean-Paul Allouche,et al. Transcendence of Sturmian or Morphic Continued Fractions , 2001 .
[3] G. A. Hedlund,et al. Symbolic Dynamics II. Sturmian Trajectories , 1940 .
[4] Gwénaël Richomme,et al. Abelian complexity of minimal subshifts , 2009, J. Lond. Math. Soc..
[5] Gérard Rauzy,et al. Échanges d'intervalles et transformations induites , 1979 .
[6] Laurent Vuillon,et al. A Characterization of Sturmian Words by Return Words , 2001, Eur. J. Comb..
[7] Zhi-Ying Wen,et al. Some properties of the factors of Sturmian sequences , 2003, Theor. Comput. Sci..
[8] Laurent Vuillon,et al. Return words in Sturmian and episturmian words , 2000, RAIRO Theor. Informatics Appl..
[9] Laurent Vuillon,et al. Generalized balances in Sturmian words , 2002, Discret. Appl. Math..
[10] Fabien Durand,et al. A characterization of substitutive sequences using return words , 1998, Discret. Math..
[11] Antonio Restivo,et al. Burrows-Wheeler transform and Sturmian words , 2003, Inf. Process. Lett..
[12] M. Lothaire. Combinatorics on words: Bibliography , 1997 .
[13] Gérard Rauzy,et al. Une g'en'eralisation du d'eveloppement en fraction continue , 1976 .
[14] Luca Q. Zamboni,et al. Descendants of Primitive Substitutions , 1999, Theory of Computing Systems.
[15] Luca Q. Zamboni,et al. Characterisations of balanced words via orderings , 2004, Theor. Comput. Sci..
[16] Veikko Keränen,et al. Abelian Squares are Avoidable on 4 Letters , 1992, ICALP.
[17] Sergey V. Avgustinovich,et al. On abelian versions of critical factorization theorem , 2012, RAIRO Theor. Informatics Appl..
[18] M. Lothaire. Algebraic Combinatorics on Words , 2002 .
[19] Laurent Vuillon,et al. On the number of return words in infinite words constructed by interval exchange transformations , 2007 .
[20] Sergey V. Avgustinovich,et al. Words Avoiding Abelian Inclusions , 2001, J. Autom. Lang. Comb..
[21] F. Michel Dekking,et al. Strongly Non-Repetitive Sequences and Progression-Free Sets , 1979, J. Comb. Theory, Ser. A.
[22] C. Reutenauer,et al. Combinatorics on Words: Christoffel Words and Repetitions in Words , 2008 .
[23] Edita Pelantová,et al. Sequences with constant number of return words , 2006, ArXiv.
[24] Gérard Rauzy,et al. Représentation géométrique de suites de complexité $2n+1$ , 1991 .