Abelian returns in Sturmian words

Return words constitute a powerful tool for studying symbolic dynamical systems. They may be regarded as a discrete analogue of the first return map in dynamical systems. In this paper we investigate two abelian variants of the notion of return word, each of them gives rise to a new characterization of Sturmian words. We prove that a recurrent infinite word is Sturmian if and only if each of its factors has two or three abelian (or semi-abelian) returns. We study the structure of abelian returns in Sturmian words and give a characterization of those factors having exactly two abelian returns. Finally we discuss connections between abelian returns and periodicity in words.

[1]  Symbolic dynamics , 2008, Scholarpedia.

[2]  Jean-Paul Allouche,et al.  Transcendence of Sturmian or Morphic Continued Fractions , 2001 .

[3]  G. A. Hedlund,et al.  Symbolic Dynamics II. Sturmian Trajectories , 1940 .

[4]  Gwénaël Richomme,et al.  Abelian complexity of minimal subshifts , 2009, J. Lond. Math. Soc..

[5]  Gérard Rauzy,et al.  Échanges d'intervalles et transformations induites , 1979 .

[6]  Laurent Vuillon,et al.  A Characterization of Sturmian Words by Return Words , 2001, Eur. J. Comb..

[7]  Zhi-Ying Wen,et al.  Some properties of the factors of Sturmian sequences , 2003, Theor. Comput. Sci..

[8]  Laurent Vuillon,et al.  Return words in Sturmian and episturmian words , 2000, RAIRO Theor. Informatics Appl..

[9]  Laurent Vuillon,et al.  Generalized balances in Sturmian words , 2002, Discret. Appl. Math..

[10]  Fabien Durand,et al.  A characterization of substitutive sequences using return words , 1998, Discret. Math..

[11]  Antonio Restivo,et al.  Burrows-Wheeler transform and Sturmian words , 2003, Inf. Process. Lett..

[12]  M. Lothaire Combinatorics on words: Bibliography , 1997 .

[13]  Gérard Rauzy,et al.  Une g'en'eralisation du d'eveloppement en fraction continue , 1976 .

[14]  Luca Q. Zamboni,et al.  Descendants of Primitive Substitutions , 1999, Theory of Computing Systems.

[15]  Luca Q. Zamboni,et al.  Characterisations of balanced words via orderings , 2004, Theor. Comput. Sci..

[16]  Veikko Keränen,et al.  Abelian Squares are Avoidable on 4 Letters , 1992, ICALP.

[17]  Sergey V. Avgustinovich,et al.  On abelian versions of critical factorization theorem , 2012, RAIRO Theor. Informatics Appl..

[18]  M. Lothaire Algebraic Combinatorics on Words , 2002 .

[19]  Laurent Vuillon,et al.  On the number of return words in infinite words constructed by interval exchange transformations , 2007 .

[20]  Sergey V. Avgustinovich,et al.  Words Avoiding Abelian Inclusions , 2001, J. Autom. Lang. Comb..

[21]  F. Michel Dekking,et al.  Strongly Non-Repetitive Sequences and Progression-Free Sets , 1979, J. Comb. Theory, Ser. A.

[22]  C. Reutenauer,et al.  Combinatorics on Words: Christoffel Words and Repetitions in Words , 2008 .

[23]  Edita Pelantová,et al.  Sequences with constant number of return words , 2006, ArXiv.

[24]  Gérard Rauzy,et al.  Représentation géométrique de suites de complexité $2n+1$ , 1991 .