Review of modeling electrostatically actuated microelectromechanical systems

A wide range of microelectromechanical systems (MEMSs) and devices are actuated using electrostatic forces. Multiphysics modeling is required, since coupling among different fields such as solid and fluid mechanics, thermomechanics and electromagnetism is involved. This work presents an overview of models for electrostatically actuated MEMSs. Three-dimensional nonlinear formulations for the coupled electromechanical fluid–structure interaction problem are outlined. Simplified reduced-order models are illustrated along with assumptions that define their range of applicability. Theoretical, numerical and experimental works are classified according to the mechanical model used in the analysis.

[1]  Davide Spinello,et al.  Vibrations and pull-in instabilities of microelectromechanical von Kármán elliptic plates incorporating the Casimir force , 2008 .

[2]  Davide Spinello,et al.  REDUCED-ORDER MODELS FOR MICROELECTROMECHANICAL RECTANGULAR AND CIRCULAR PLATES INCORPORATING THE CASIMIR FORCE , 2008 .

[3]  Muthukumaran Packirisamy,et al.  Dynamic testing of micromechanical structures under thermo-electro-mechanical influences , 2007 .

[4]  Davide Spinello,et al.  Capacitance estimate for electrostatically actuated narrow microbeams , 2006 .

[5]  Davide Spinello,et al.  Analysis of electrostatic MEMS using meshless local Petrov-Galerkin (MLPG) method , 2006 .

[6]  A. Nayfeh,et al.  Dynamic analysis of variable-geometry electrostatic microactuators , 2006 .

[7]  M. Porfiri,et al.  Electromechanical Model of Electrically Actuated Narrow Microbeams , 2006, Journal of Microelectromechanical Systems.

[8]  A. Alasty,et al.  Influence of van der Waals force on the pull-in parameters of cantilever type nanoscale electrostatic actuators , 2006 .

[9]  Subrahmanyam Gorthi,et al.  Cantilever beam electrostatic MEMS actuators beyond pull-in , 2006 .

[10]  S. Mukherjee,et al.  Fully Lagrangian modeling of MEMS with thin plates , 2006, Journal of Microelectromechanical Systems.

[11]  Narayana R Aluru,et al.  Coupling of hierarchical fluid models with electrostatic and mechanical models for the dynamic analysis of MEMS , 2006 .

[12]  Eugenio Brusa,et al.  Coupled-field FEM nonlinear dynamics analysis of continuous microsystems by non-incremental approach , 2006 .

[13]  A. Omar,et al.  An improved two-dimensional coupled electrostatic-mechanical model for RF MEMS switches , 2006 .

[14]  S. Krylov,et al.  Higher order correction of electrostatic pressure and its influence on the pull-in behavior of microstructures , 2006 .

[15]  Paul C.-P. Chao,et al.  A novel method to predict the pull-in voltage in a closed form for micro-plates actuated by a distributed electrostatic force , 2006 .

[16]  M. Bordag Casimir effect for a sphere and a cylinder in front of a plane and corrections to the proximity force theorem , 2006, hep-th/0602295.

[17]  H. Gies,et al.  Casimir effect for curved geometries: proximity-force-approximation validity limits. , 2006, Physical review letters.

[18]  R. Esquivel-Sirvent,et al.  Scaling of micro- and nanodevices actuated by Casimir forces , 2005 .

[19]  Tobin A. Driscoll,et al.  The effect of the small-aspect-ratio approximation on canonical electrostatic MEMS models , 2005 .

[20]  Yael Nemirovsky,et al.  A membrane micropump electrostatically actuated across the working fluid , 2005 .

[21]  Venkata R. Sonti,et al.  Analytical solutions for the stiffness and damping coefficients of squeeze films in MEMS devices with perforated back plates , 2005 .

[22]  Ali H. Nayfeh,et al.  Dynamics of MEMS resonators under superharmonic and subharmonic excitations , 2005 .

[23]  R. Batra Elements of Continuum Mechanics , 2005 .

[24]  Y. Hon,et al.  Numerical simulation and analysis of an electroactuated beam using a radial basis function , 2005 .

[25]  W. Guo,et al.  Deflection and stability of membrane structures under electrostatic and Casimir forces in microelectromechanical systems , 2005 .

[26]  Ramón Costa Castelló,et al.  Modelling the electrostatic actuation of MEMS: state of the art 2005. , 2005 .

[27]  Charbel Farhat,et al.  Modeling and Simulation of Multiphysics Systems , 2005, J. Comput. Inf. Sci. Eng..

[28]  Ugo Andreaus,et al.  Vibrations of Cracked Euler-Bernoulli Beams using Meshless Local Petrov-Galerkin (MLPG) Method , 2005 .

[29]  ALI H. NAYFEH,et al.  Reduced-Order Models for MEMS Applications , 2005 .

[30]  Conor O'Mahony,et al.  Modelling electrostatic behaviour of microcantilevers incorporating residual stress gradient and non-ideal anchors , 2005 .

[31]  S. Mukherjee,et al.  Nonlinear mechanics of MEMS plates with a total Lagrangian approach , 2005 .

[32]  A. Nayfeh,et al.  Modeling and design of variable-geometry electrostatic microactuators , 2005 .

[33]  Ali H. Nayfeh,et al.  A reduced-order model for electrically actuated clamped circular plates , 2005 .

[34]  W. Lin,et al.  Casimir effect on the pull-in parameters of nanometer switches , 2005 .

[35]  Jian-Gang Guo,et al.  Influence of van der Waals and Casimir forces on electrostatic torsional actuators , 2004 .

[36]  Ali H. Nayfeh,et al.  Modeling and simulations of thermoelastic damping in microplates , 2004 .

[37]  S.K. De,et al.  Full-Lagrangian schemes for dynamic analysis of electrostatic MEMS , 2004, Journal of Microelectromechanical Systems.

[38]  Qing Jiang,et al.  Characterization of the squeeze film damping effect on the quality factor of a microbeam resonator , 2004 .

[39]  Narayana R Aluru,et al.  Static and Dynamic Analysis of Carbon Nanotube-Based Switches , 2004 .

[40]  S. Krylov,et al.  Pull-in Dynamics of an Elastic Beam Actuated by Continuously Distributed Electrostatic Force , 2004 .

[41]  Hua Li,et al.  A coupled field study on the non-linear dynamic characteristics of an electrostatic micropump , 2004 .

[42]  Szu-Yuan Cheng,et al.  Macromodeling of coupled-domain MEMS devices with electrostatic and electrothermal effects , 2004 .

[43]  Subrata Mukherjee,et al.  Numerical analysis of 3D electrostatics of deformable conductors using a Lagrangian approach , 2004 .

[44]  Antonio Gugliotta,et al.  Large deflections of microbeams under electrostatic loads , 2004 .

[45]  J. Kuang,et al.  Dynamic characteristics of shaped micro-actuators solved using the differential quadrature method , 2004 .

[46]  M. Younis,et al.  A new approach to the modeling and simulation of flexible microstructures under the effect of squeeze-film damping , 2004 .

[47]  Ali H. Nayfeh,et al.  A reduced-order model for electrically actuated microbeam-based MEMS , 2003 .

[48]  J. Torczynski,et al.  An improved Reynolds-equation model for gas damping of microbeam motion , 2003, Journal of Microelectromechanical Systems.

[49]  Alan Mathewson,et al.  Analysis of electromechanical boundary effects on the pull-in of micromachined fixed–fixed beams , 2003 .

[50]  T. Juneau,et al.  Dual-axis optical mirror positioning using a nonlinear closed-loop controller , 2003, TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664).

[51]  A. Nayfeh,et al.  Secondary resonances of electrically actuated resonant microsensors , 2003 .

[52]  Amir Khajepour,et al.  Modeling of two-hot-arm horizontal thermal actuator , 2003 .

[53]  H. P. Lee,et al.  Nonlinear Dynamic Analysis of MEMS Switches by Nonlinear Modal Analysis , 2003 .

[54]  M. M. Teymoori,et al.  A novel electrostatic micromachined pump for drug delivery systems , 2002, ICONIP '02. Proceedings of the 9th International Conference on Neural Information Processing. Computational Intelligence for the E-Age (IEEE Cat. No.02EX575).

[55]  David Elata,et al.  An efficient DIPIE algorithm for CAD of electrostatically actuated MEMS devices , 2002 .

[56]  J. Pelesko,et al.  Modeling MEMS and NEMS , 2002 .

[57]  Gang Li,et al.  Efficient mixed-domain analysis of electrostatic MEMS , 2002, IEEE/ACM International Conference on Computer Aided Design, 2002. ICCAD 2002..

[58]  Ali H. Nayfeh,et al.  Characterization of the mechanical behavior of an electrically actuated microbeam , 2002 .

[59]  R. Batra,et al.  Plane wave solutions and modal analysis in higher order shear and normal deformable plate theories , 2002 .

[60]  Fuqian Yang Electromechanical instability of microscale structures , 2002 .

[61]  Narayana R Aluru,et al.  A Lagrangian approach for electrostatic analysis of deformable conductors , 2002 .

[62]  Robert Puers,et al.  Pull-in voltage analysis of electrostatically actuated beam structures with fixed–fixed and fixed–free end conditions , 2002 .

[63]  S. Atluri,et al.  The Meshless Local Petrov-Galerkin (MLPG) Method: A Simple \& Less-costly Alternative to the Finite Element and Boundary Element Methods , 2002 .

[64]  N. Aluru,et al.  Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches , 2002 .

[65]  J. Pelesko,et al.  Nonlocal problems in MEMS device control , 2001 .

[66]  J. Judy Microelectromechanical systems (MEMS): fabrication, design and applications , 2001 .

[67]  Gijsbertus J.M. Krijnen,et al.  Micromachined structures for thermal measurements of fluid and flow parameters , 2001 .

[68]  U. Mohideen,et al.  New developments in the Casimir effect , 2001, quant-ph/0106045.

[69]  Siak Piang Lim,et al.  A neural-network-based method of model reduction for the dynamic simulation of MEMS , 2001 .

[70]  Y. Meng,et al.  Theoretical study of the sticking of a membrane strip in MEMS under the Casimir effect , 2001 .

[71]  M. Roukes,et al.  Metastability and the Casimir effect in micromechanical systems , 2000, cond-mat/0008096.

[72]  M. Roukes,et al.  Stiction, adhesion energy, and the Casimir effect in micromechanical systems , 2000, cond-mat/0008051.

[73]  S.D. Senturia,et al.  Computer-aided generation of nonlinear reduced-order dynamic macromodels. I. Non-stress-stiffened case , 2000, Journal of Microelectromechanical Systems.

[74]  R. Batra,et al.  Derivation of Plate and Rod Equations for a Piezoelectric Body from a Mixed Three-Dimensional Variational Principle , 2000 .

[75]  E. S. Hung,et al.  Extending the travel range of analog-tuned electrostatic actuators , 1999 .

[76]  Hyun Gyu Kim,et al.  Analysis of thin beams, using the meshless local Petrov–Galerkin method, with generalized moving least squares interpolations , 1999 .

[77]  S. D. Senturia,et al.  Generating efficient dynamical models for microelectromechanical systems from a few finite-element simulation runs , 1999 .

[78]  S. Senturia,et al.  Speed-energy optimization of electrostatic actuators based on pull-in , 1999 .

[79]  Narayana R Aluru,et al.  A reproducing kernel particle method for meshless analysis of microelectromechanical systems , 1999 .

[80]  G. J. Maclay,et al.  The role of the casimir effect in the static deflection and stiction of membrane strips in microelectromechanical systems (MEMS) , 1998 .

[81]  Gabriel M. Rebeiz,et al.  Micromachined devices for wireless communications , 1998, Proc. IEEE.

[82]  S. Senturia,et al.  M-TEST: A test chip for MEMS material property measurement using electrostatically actuated test structures , 1997 .

[83]  Bumkyoo Choi,et al.  Improved analysis of microbeams under mechanical and electrostatic loads , 1997 .

[84]  S. Senturia,et al.  Pull-in time dynamics as a measure of absolute pressure , 1997, Proceedings IEEE The Tenth Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots.

[85]  Palghat S. Ramesh,et al.  DYNAMIC ANALYSIS OF MICRO‐ELECTRO‐MECHANICAL SYSTEMS , 1996 .

[86]  Palghat S. Ramesh,et al.  On the application of 2D potential theory to electrostatic simulation , 1995 .

[87]  K. Pister,et al.  Dynamics Of Polysilicon Parallel-plate Electrostatic Actuators , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[88]  David W. Burns,et al.  Sealed-cavity resonant microbeam pressure sensor , 1995 .

[89]  H. Tilmans,et al.  Electrostatically driven vacuum-encapsulated polysilicon resonators part II. theory and performance , 1994 .

[90]  H. Tilmans,et al.  Electrostatically driven vacuum-encapsulated polysilicon resonators Part I. Design and fabrication , 1994 .

[91]  Jacob K. White,et al.  A computer-aided design system for microelectromechanical systems (MEMCAD) , 1992 .

[92]  H. B. Keller,et al.  NUMERICAL ANALYSIS AND CONTROL OF BIFURCATION PROBLEMS (II): BIFURCATION IN INFINITE DIMENSIONS , 1991 .

[93]  H. Nishiyama,et al.  Capacitance of a strip capacitor , 1990 .

[94]  N. P. van der Meijs,et al.  VLSI circuit reconstruction from mask topology , 1984, Integr..

[95]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[96]  W. Newell Miniaturization of tuning forks. , 1968, Science.

[97]  Geoffrey Ingram Taylor,et al.  The coalescence of closely spaced drops when they are at different electric potentials , 1968, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[98]  H. Nathanson,et al.  The resonant gate transistor , 1967 .

[99]  H. B. Palmer The capacitance of a parallel-plate capacitor by the Schwartz-Christoffel transformation , 1937, Electrical Engineering.

[100]  R. C. Batraa,et al.  Vibrations of narrow microbeams predeformed by an electric field , 2007 .

[101]  D. Spinello,et al.  Effects of Casimir force on pull-in instability in micromembranes , 2007 .

[102]  R. Puers,et al.  A physical model to predict stiction in MEMS , 2006 .

[103]  S. Lamoreaux The Casimir force: background, experiments, and applications , 2004 .

[104]  Jian-Gang Guo,et al.  Influence of van der Waals and Casimir forces on electrostatic torsional actuators , 2004, Journal of Microelectromechanical Systems.

[105]  V. Shrivastavaa,et al.  Numerical analysis of 3 D electrostatics of deformable conductors using a Lagrangian approach , 2004 .

[106]  John A. Pelesko,et al.  Electrostatic deflections of circular elastic membranes , 2003 .

[107]  M. Younis,et al.  A Study of the Nonlinear Response of a Resonant Microbeam to an Electric Actuation , 2003 .

[108]  R. Batra,et al.  Higher-Order Piezoelectric Plate Theory Derived from a Three-Dimensional Variational Principle , 2002 .

[109]  A. Siamj. MATHEMATICAL MODELING OF ELECTROSTATIC MEMS WITH TAILORED DIELECTRIC PROPERTIES , 2002 .

[110]  John A. Pelesko,et al.  Mathematical Modeling of Electrostatic MEMS with Tailored Dielectric Properties , 2002, SIAM J. Appl. Math..

[111]  Jacob K. White,et al.  Simulating the behavior of MEMS devices: computational methods and needs , 1997 .

[112]  B. Hamrock,et al.  Fundamentals of Fluid Film Lubrication , 1994 .

[113]  S. Antman Nonlinear problems of elasticity , 1994 .

[114]  P. M. Naghdi,et al.  The Theory of Shells and Plates , 1973 .

[115]  S. F.R.,et al.  The coalescence of closely spaced drops when they are at different electric potentials , 1968 .

[116]  E. Lifshitz The theory of molecular attractive forces between solids , 1956 .

[117]  H. Schlichting Boundary Layer Theory , 1955 .

[118]  A. Nayfeh,et al.  Institute of Physics Publishing Journal of Micromechanics and Microengineering a Reduced-order Model for Electrically Actuated Microplates , 2022 .

[119]  Steven W. Shaw,et al.  Institute of Physics Publishing Journal of Micromechanics and Microengineering the Nonlinear Response of Resonant Microbeam Systems with Purely-parametric Electrostatic Actuation , 2022 .