Shape Particle Filtering for Image Segmentation

Deformable template models are valuable tools in medical image segmentation. Current methods elegantly incorporate global shape and appearance, but can not cope with localized appearance variations and rely on an assumption of Gaussian gray value distribution. Furthermore, initialization near the optimal solution is required.

[1]  Gjlles Aubert,et al.  Mathematical problems in image processing , 2001 .

[2]  Ron Kikinis,et al.  Adaptive, template moderated, spatially varying statistical classification , 2000, Medical Image Anal..

[3]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[4]  Josef Kittler,et al.  Moderating k-NN Classifiers , 2002, Pattern Analysis & Applications.

[5]  Anil K. Jain,et al.  Deformable template models: A review , 1998, Signal Process..

[6]  Gilberto Zamora,et al.  Hierarchical segmentation of vertebrae from x-ray images , 2003, SPIE Medical Imaging.

[7]  K. Doi,et al.  Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists' detection of pulmonary nodules. , 2000, AJR. American journal of roentgenology.

[8]  Neil J. Gordon,et al.  Editors: Sequential Monte Carlo Methods in Practice , 2001 .

[9]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[11]  Alejandro F. Frangi,et al.  Active shape model segmentation with optimal features , 2002, IEEE Transactions on Medical Imaging.

[12]  Marleen de Bruijne,et al.  Adapting Active Shape Models for 3D Segmentation of Tubular Structures in Medical Images , 2003, IPMI.

[13]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[14]  Timothy F. Cootes,et al.  Active Appearance Models , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[16]  Stan Sclaroff,et al.  Active blobs: region-based, deformable appearance models , 2003, Computer Vision and Image Understanding.

[17]  Milan Sonka,et al.  Active appearance motion models for endocardial contour detection in time sequences of echocardiograms , 2001, SPIE Medical Imaging.

[18]  P P Smyth,et al.  Vertebral shape: automatic measurement with active shape models. , 1999, Radiology.

[19]  Milan Sonka,et al.  Object localization and border detection criteria design in edge-based image segmentation: automated learning from examples , 2000, IEEE Transactions on Medical Imaging.

[20]  Timothy F. Cootes,et al.  Improving Appearance Model Matching Using Local Image Structure , 2003, IPMI.

[21]  Bjarne Kjær Ersbøll,et al.  Extending and Applying Active Appearance Models for Automated, High Precision Segmentation* , 2001 .

[22]  J. Craggs Applied Mathematical Sciences , 1973 .