Mitigating NBTI Degradation on FinFET GPUs through Exploiting Device Heterogeneity

Recent experimental studies reveal that FinFET devices commercialized in recent years tend to suffer from moresevere NBTI degradation compared to planar transistors, necessitating effective techniques on processors built with FinFET for endurable operations. We propose to address this problem by exploiting the device heterogeneity and leveraging the slower NBTI aging rate manifested on the planar devices. We focus on modern graphics processing units in this study due to their wide usage in the current community. We validate the effectiveness of the technique byapplying it to the warp scheduler and demonstrate NBTIdegradation is considerably alleviated with slight performance overhead.

[1]  Tajana Simunic,et al.  Temperature aware thread block scheduling in GPGPUs , 2013, 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC).

[2]  Andrew B. Kahng The ITRS design technology and system drivers roadmap: Process and status , 2013, 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC).

[3]  Ishiuchi,et al.  Alpha-Power Law MOSFET Model and its Applications to CMOS Inverter Delay and Other Formulas , 2004 .

[4]  Sorin Cotofana,et al.  Statistical reliability analysis of NBTI impact on FinFET SRAMs and mitigation technique using independent-gate devices , 2012, 2012 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH).

[5]  Jean-Pierre Colinge,et al.  Multiple-gate SOI MOSFETs , 2004 .

[6]  Kevin Skadron,et al.  Rodinia: A benchmark suite for heterogeneous computing , 2009, 2009 IEEE International Symposium on Workload Characterization (IISWC).

[7]  Jaume Abella,et al.  NBTI-Resilient Memory Cells with NAND Gates for Highly-Ported Structures , 2007 .

[8]  Pradip Bose,et al.  A Proactive Wearout Recovery Approach for Exploiting Microarchitectural Redundancy to Extend Cache SRAM Lifetime , 2008, 2008 International Symposium on Computer Architecture.

[9]  Scott A. Mahlke,et al.  Data Access Partitioning for Fine-grain Parallelism on Multicore Architectures , 2007, 40th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 2007).

[10]  Henry Wong,et al.  Analyzing CUDA workloads using a detailed GPU simulator , 2009, 2009 IEEE International Symposium on Performance Analysis of Systems and Software.

[11]  Luca Benini,et al.  Aging-aware compiler-directed VLIW assignment for GPGPU architectures , 2013, 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC).

[12]  Mahmut T. Kandemir,et al.  Performance enhancement under power constraints using heterogeneous CMOS-TFET multicores , 2012, CODES+ISSS '12.

[13]  Narayanan Vijaykrishnan,et al.  Impact of NBTI on FPGAs , 2007, 20th International Conference on VLSI Design held jointly with 6th International Conference on Embedded Systems (VLSID'07).

[14]  Ulf Schlichtmann,et al.  Predicting future product performance: Modeling and evaluation of standard cells in FinFET technologies , 2013, 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC).

[15]  Yu Cao,et al.  Compact Modeling and Simulation of Circuit Reliability for 65-nm CMOS Technology , 2007, IEEE Transactions on Device and Materials Reliability.

[16]  M.A. Alam,et al.  Investigation and modeling of interface and bulk trap generation during negative bias temperature instability of p-MOSFETs , 2004, IEEE Transactions on Electron Devices.

[17]  R. Degraeve,et al.  Reliability Comparison of Triple-Gate Versus Planar SOI FETs , 2006, IEEE Transactions on Electron Devices.

[18]  Josep Torrellas,et al.  Facelift: Hiding and slowing down aging in multicores , 2008, 2008 41st IEEE/ACM International Symposium on Microarchitecture.

[19]  David A. Patterson,et al.  Computer Architecture: A Quantitative Approach , 1969 .

[20]  Erika Gunadi,et al.  Combating Aging with the Colt Duty Cycle Equalizer , 2010, 2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture.

[21]  Nam Sung Kim,et al.  GPUWattch: enabling energy optimizations in GPGPUs , 2013, ISCA.

[22]  Yu Cao,et al.  Exploring sub-20nm FinFET design with Predictive Technology Models , 2012, DAC Design Automation Conference 2012.

[23]  ミン・ヤン,et al.  Hybrid planar and FinFETCMOS device , 2004 .

[24]  Jaume Abella,et al.  Penelope: The NBTI-Aware Processor , 2007, 40th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 2007).

[25]  Zeshan Chishti,et al.  Distance Associativity for High-Performance Energy-Efficient Non-Uniform Cache Architectures , 2003, MICRO.

[26]  B. Kaczer,et al.  Reliability issues in MuGFET nanodevices , 2008, 2008 IEEE International Reliability Physics Symposium.

[27]  Hyesoon Kim,et al.  Performance Analysis and Tuning for General Purpose Graphics Processing Units , 2012 .

[28]  Donggun Park,et al.  A study of negative-bias temperature instability of SOI and body-tied FinFETs , 2005, IEEE Electron Device Letters.

[29]  A. Asenov,et al.  Predicting future technology performance , 2013, 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC).

[30]  Niraj K. Jha,et al.  3D vs. 2D analysis of FinFET logic gates under process variations , 2011, 2011 IEEE 29th International Conference on Computer Design (ICCD).

[31]  Richard W. Vuduc,et al.  Performance Analysis and Tuning for General Purpose Graphics Processing Units (GPGPU) , 2012, Synthesis Lectures on Computer Architecture.

[32]  Soha Hassoun,et al.  Gate sizing: finFETs vs 32nm bulk MOSFETs , 2006, 2006 43rd ACM/IEEE Design Automation Conference.

[33]  Yuan Xie,et al.  Dependability analysis of nano-scale FinFET circuits , 2006, IEEE Computer Society Annual Symposium on Emerging VLSI Technologies and Architectures (ISVLSI'06).