Pseudomonas Aeruginosa: Resistance to the Max

Pseudomonas aeruginosa is intrinsically resistant to a variety of antimicrobials and can develop resistance during anti-pseudomonal chemotherapy both of which compromise treatment of infections caused by this organism. Resistance to multiple classes of antimicrobials (multidrug resistance) in particular is increasingly common in P. aeruginosa, with a number of reports of pan-resistant isolates treatable with a single agent, colistin. Acquired resistance in this organism is multifactorial and attributable to chromosomal mutations and the acquisition of resistance genes via horizontal gene transfer. Mutational changes impacting resistance include upregulation of multidrug efflux systems to promote antimicrobial expulsion, derepression of ampC, AmpC alterations that expand the enzyme's substrate specificity (i.e., extended-spectrum AmpC), alterations to outer membrane permeability to limit antimicrobial entry and alterations to antimicrobial targets. Acquired mechanisms contributing to resistance in P. aeruginosa include β-lactamases, notably the extended-spectrum β-lactamases and the carbapenemases that hydrolyze most β-lactams, aminoglycoside-modifying enzymes, and 16S rRNA methylases that provide high-level pan-aminoglycoside resistance. The organism's propensity to grow in vivo as antimicrobial-tolerant biofilms and the occurrence of hypermutator strains that yield antimicrobial resistant mutants at higher frequency also compromise anti-pseudomonal chemotherapy. With limited therapeutic options and increasing resistance will the untreatable P. aeruginosa infection soon be upon us?

[1]  Hiroshi Nikaido,et al.  Efflux-Mediated Drug Resistance in Bacteria , 2012, Drugs.

[2]  M. Bassetti,et al.  Multidrug-resistant Pseudomonas aeruginosa bloodstream infections: risk factors and mortality , 2011, Epidemiology and Infection.

[3]  K. Mertens,et al.  Clinical outcomes of health-care-associated infections and antimicrobial resistance in patients admitted to European intensive-care units: a cohort study. , 2011, The Lancet. Infectious diseases.

[4]  P. Plésiat,et al.  A Two-Component Regulatory System Interconnects Resistance to Polymyxins, Aminoglycosides, Fluoroquinolones, and β-Lactams in Pseudomonas aeruginosa , 2010, Antimicrobial Agents and Chemotherapy.

[5]  A. Oliver Mutators in cystic fibrosis chronic lung infection: Prevalence, mechanisms, and consequences for antimicrobial therapy. , 2010, International journal of medical microbiology : IJMM.

[6]  Xianghui Liang,et al.  Identification of bla OXA‐128 and bla OXA‐129, two novel OXA‐type extended‐spectrum‐β‐lactamases in Pseudomonas aeruginosa, in Hunan Province, China , 2010, Journal of basic microbiology.

[7]  Je Chul Lee,et al.  Emergence of 16S rRNA methylase gene armA and cocarriage of bla(IMP-1) in Pseudomonas aeruginosa isolates from South Korea. , 2010, Diagnostic microbiology and infectious disease.

[8]  P. Mahar,et al.  Pseudomonas aeruginosa bacteraemia in burns patients: Risk factors and outcomes. , 2010, Burns : journal of the International Society for Burn Injuries.

[9]  M. El-Gamal,et al.  Current status of carbapenem antibiotics. , 2010, Current topics in medicinal chemistry.

[10]  T. Walsh Emerging carbapenemases: a global perspective. , 2010, International journal of antimicrobial agents.

[11]  S. Lory,et al.  Emergence of Pseudomonas aeruginosa Strains Producing High Levels of Persister Cells in Patients with Cystic Fibrosis , 2010, Journal of bacteriology.

[12]  J. Bocco,et al.  Mucoidy, Quorum Sensing, Mismatch Repair and Antibiotic Resistance in Pseudomonas aeruginosa from Cystic Fibrosis Chronic Airways Infections , 2010, PloS one.

[13]  D. Hospenthal,et al.  Prevalence of multidrug-resistant organisms recovered at a military burn center. , 2010, Burns : journal of the International Society for Burn Injuries.

[14]  S. Mody,et al.  Imipenem resistance of Pseudomonas in pneumonia: a systematic literature review , 2010, BMC pulmonary medicine.

[15]  A. Gales,et al.  Efflux pumps expression and its association with porin down-regulation and β-lactamase production among Pseudomonas aeruginosa causing bloodstream infections in Brazil , 2010, BMC Microbiology.

[16]  T. Tolker-Nielsen,et al.  An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal. , 2010, FEMS immunology and medical microbiology.

[17]  W. Witte,et al.  Resistance to cephalosporins and carbapenems in Gram-negative bacterial pathogens. , 2010, International journal of medical microbiology : IJMM.

[18]  V. Tam,et al.  Impact of multidrug-resistant Pseudomonas aeruginosa infection on patient outcomes , 2010, Expert review of pharmacoeconomics & outcomes research.

[19]  Wei-hua Zhao,et al.  β-Lactamases identified in clinical isolates of Pseudomonas aeruginosa , 2010, Critical reviews in microbiology.

[20]  X. Xu,et al.  Distribution of 16S rRNA methylases among different species of Gram-negative bacilli with high-level resistance to aminoglycosides , 2010, European Journal of Clinical Microbiology & Infectious Diseases.

[21]  K. Bush,et al.  Differential Selection of Single-Step AmpC or Efflux Mutants of Pseudomonas aeruginosa by Using Cefepime, Ceftazidime, or Ceftobiprole , 2010, Antimicrobial Agents and Chemotherapy.

[22]  Jianjun Li,et al.  High-level antibiotic resistance in Pseudomonas aeruginosa biofilm: the ndvB gene is involved in the production of highly glycerol-phosphorylated beta-(1->3)-glucans, which bind aminoglycosides. , 2010, Glycobiology.

[23]  T. Kiser,et al.  Efflux Pump Contribution to Multidrug Resistance in Clinical Isolates of Pseudomonas aeruginosa , 2010, Pharmacotherapy.

[24]  A. Oliver,et al.  Bacterial hypermutation in cystic fibrosis, not only for antibiotic resistance. , 2010, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[25]  M. Falagas,et al.  In vitro susceptibility to various antibiotics of colistin-resistant gram-negative bacterial isolates in a general tertiary hospital in Crete, Greece. , 2010, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[26]  R. Hancock,et al.  Adaptive Resistance to the “Last Hope” Antibiotics Polymyxin B and Colistin in Pseudomonas aeruginosa Is Mediated by the Novel Two-Component Regulatory System ParR-ParS , 2010, Antimicrobial Agents and Chemotherapy.

[27]  N. Woodford,et al.  Efflux Pumps, OprD Porin, AmpC β-Lactamase, and Multiresistance in Pseudomonas aeruginosa Isolates from Cystic Fibrosis Patients , 2010, Antimicrobial Agents and Chemotherapy.

[28]  T. Qu,et al.  Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa isolates from Chinese hospitals. , 2010, International journal of antimicrobial agents.

[29]  J. van Eldere,et al.  Detection and characterization of class A extended-spectrum-beta-lactamase-producing Pseudomonas aeruginosa isolates in Belgian hospitals. , 2010, The Journal of antimicrobial chemotherapy.

[30]  P. Nordmann,et al.  Emergence of KPC-Producing Pseudomonas aeruginosa in the United States , 2010, Antimicrobial Agents and Chemotherapy.

[31]  E. M. Mamizuka,et al.  Balanoposthitis caused by Pseudomonas aeruginosa co-producing metallo-beta-lactamase and 16S rRNA methylase in children with hematological malignancies. , 2010, International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases.

[32]  Thomas Bjarnsholt,et al.  Antibiotic resistance of bacterial biofilms. , 2010, International journal of antimicrobial agents.

[33]  Petra Tielen,et al.  Contribution of oxygen-limiting conditions to persistent infection of Pseudomonas aeruginosa. , 2010, Future microbiology.

[34]  A. Hidrón,et al.  Multidrug Resistance among Gram-Negative Pathogens That Caused Healthcare-Associated Infections Reported to the National Healthcare Safety Network, 2006–2008 , 2010, Infection Control & Hospital Epidemiology.

[35]  S. Upadhyay,et al.  Presence of different beta-lactamase classes among clinical isolates of Pseudomonas aeruginosa expressing AmpC beta-lactamase enzyme. , 2010, Journal of infection in developing countries.

[36]  D. Hocquet,et al.  Detection of a new extended-spectrum oxacillinase in Pseudomonas aeruginosa. , 2010, The Journal of antimicrobial chemotherapy.

[37]  M. Falagas,et al.  Colistin therapy for microbiologically documented multidrug-resistant Gram-negative bacterial infections: a retrospective cohort study of 258 patients. , 2010, International journal of antimicrobial agents.

[38]  V. Tam,et al.  Prevalence, Resistance Mechanisms, and Susceptibility of Multidrug-Resistant Bloodstream Isolates of Pseudomonas aeruginosa , 2010, Antimicrobial Agents and Chemotherapy.

[39]  V. Miriagou,et al.  GES-13, a β-Lactamase Variant Possessing Lys-104 and Asn-170 in Pseudomonas aeruginosa , 2010, Antimicrobial Agents and Chemotherapy.

[40]  G. Eliopoulos,et al.  The Sanford guide to antimicrobial therapy , 2010 .

[41]  K. Kerr,et al.  Pseudomonas aeruginosa: a formidable and ever-present adversary. , 2009, The Journal of hospital infection.

[42]  E. Cordero,et al.  New information about the polymyxin/colistin class of antibiotics , 2009, Expert opinion on pharmacotherapy.

[43]  P. Nordmann,et al.  BEL-2, an Extended-Spectrum β-Lactamase with Increased Activity toward Expanded-Spectrum Cephalosporins in Pseudomonas aeruginosa , 2009, Antimicrobial Agents and Chemotherapy.

[44]  G. Arlet,et al.  Mechanisms of carbapenem resistance in non-metallo-beta-lactamase-producing clinical isolates of Pseudomonas aeruginosa from a Tunisian hospital. , 2009, Pathologie-biologie.

[45]  Ronald N. Jones,et al.  Antipseudomonal activity of piperacillin/tazobactam: more than a decade of experience from the SENTRY Antimicrobial Surveillance Program (1997-2007). , 2009, Diagnostic microbiology and infectious disease.

[46]  M. Toleman,et al.  First Report of the Metallo-β-Lactamase SPM-1 in Europe , 2009, Antimicrobial Agents and Chemotherapy.

[47]  L. Poirel,et al.  Emergence of SHV-2a extended-spectrum beta-lactamases in clinical isolates of Pseudomonas aeruginosa in a university hospital in Tunisia. , 2009, Microbial drug resistance.

[48]  C. Salgado,et al.  Attributable Hospital Cost and Length of Stay Associated with Health Care-Associated Infections Caused by Antibiotic-Resistant Gram-Negative Bacteria , 2009, Antimicrobial Agents and Chemotherapy.

[49]  M. Page,et al.  Prospects for the next anti-Pseudomonas drug. , 2009, Current opinion in pharmacology.

[50]  Nancy D. Hanson,et al.  Antibacterial-Resistant Pseudomonas aeruginosa: Clinical Impact and Complex Regulation of Chromosomally Encoded Resistance Mechanisms , 2009, Clinical Microbiology Reviews.

[51]  A. Oliver,et al.  Detection of the Novel Extended-Spectrum β-Lactamase OXA-161 from a Plasmid-Located Integron in Pseudomonas aeruginosa Clinical Isolates from Spain , 2009, Antimicrobial Agents and Chemotherapy.

[52]  D. Kwon,et al.  Alterations in Two-Component Regulatory Systems of phoPQ and pmrAB Are Associated with Polymyxin B Resistance in Clinical Isolates of Pseudomonas aeruginosa , 2009, Antimicrobial Agents and Chemotherapy.

[53]  A. Oliver,et al.  Nosocomial Spread of Colistin-Only-Sensitive Sequence Type 235 Pseudomonas aeruginosa Isolates Producing the Extended-Spectrum β-Lactamases GES-1 and GES-5 in Spain , 2009, Antimicrobial Agents and Chemotherapy.

[54]  P. Nordmann,et al.  Molecular Epidemiology and Mechanisms of Carbapenem Resistance in Pseudomonas aeruginosa , 2009, Antimicrobial Agents and Chemotherapy.

[55]  D. Kwon,et al.  A single amino acid substitution in PmrB is associated with polymyxin B resistance in clinical isolate of Pseudomonas aeruginosa. , 2009, FEMS microbiology letters.

[56]  Daniel Yordanov,et al.  Pseudomonas aeruginosa - a phenomenon of bacterial resistance. , 2009, Journal of medical microbiology.

[57]  P. Nordmann,et al.  Diversity, Epidemiology, and Genetics of Class D β-Lactamases , 2009, Antimicrobial Agents and Chemotherapy.

[58]  E. Änggård,et al.  A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic‐resistant Pseudomonas aeruginosa; a preliminary report of efficacy , 2009, Clinical otolaryngology : official journal of ENT-UK ; official journal of Netherlands Society for Oto-Rhino-Laryngology & Cervico-Facial Surgery.

[59]  Wei-hua Zhao,et al.  Relevance of resistance levels to carbapenems and integron-borne blaIMP-1, blaIMP-7, blaIMP-10 and blaVIM-2 in clinical isolates of Pseudomonas aeruginosa. , 2009, Journal of medical microbiology.

[60]  N. Verstraeten,et al.  Novel persistence genes in Pseudomonas aeruginosa identified by high-throughput screening. , 2009, FEMS microbiology letters.

[61]  F. Taddei,et al.  Effect of mutator P. aeruginosa on antibiotic resistance acquisition and respiratory function in cystic fibrosis , 2009, Pediatric pulmonology.

[62]  Xilin Zhao,et al.  Quinolones: Action and Resistance Updated , 2009, Current topics in medicinal chemistry.

[63]  P. Nordmann,et al.  Diversity of β-Lactamases Produced by Ceftazidime-Resistant Pseudomonas aeruginosa Isolates Causing Bloodstream Infections in Brazil , 2009, Antimicrobial Agents and Chemotherapy.

[64]  D. Hocquet,et al.  Emergence of extensive-drug-resistant Pseudomonas aeruginosa in a French university hospital , 2009, European Journal of Clinical Microbiology & Infectious Diseases.

[65]  M. Sala,et al.  Effectiveness and safety of colistin for the treatment of multidrug-resistant Pseudomonas aeruginosa infections , 2009, Infection.

[66]  A. Oliver,et al.  Nosocomial Outbreak of a Non-Cefepime-Susceptible Ceftazidime-Susceptible Pseudomonas aeruginosa Strain Overexpressing MexXY-OprM and Producing an Integron-Borne PSE-1 ß-Lactamase , 2009, Journal of Clinical Microbiology.

[67]  J. Quinn,et al.  Emergence of KPC-Producing Pseudomonas aeruginosa in Trinidad and Tobago , 2009, Journal of Clinical Microbiology.

[68]  K. Bush,et al.  Effect of MexXY Overexpression on Ceftobiprole Susceptibility in Pseudomonas aeruginosa , 2009, Antimicrobial Agents and Chemotherapy.

[69]  J. Rello,et al.  Pseudomonas aeruginosa virulence and therapy: Evolving translational strategies* , 2009, Critical care medicine.

[70]  Je Chul Lee,et al.  Emergence of 16S rRNA methylase rmtA in colistin-only-sensitive Pseudomonas aeruginosa in South Korea. , 2009, International journal of antimicrobial agents.

[71]  J. Davies,et al.  Bugs, biofilms, and resistance in cystic fibrosis. , 2009, Respiratory care.

[72]  A. Shorr Review of studies of the impact on Gram-negative bacterial resistance on outcomes in the intensive care unit* , 2009, Critical care medicine.

[73]  C. Pommerenke,et al.  Genomewide Identification of Genetic Determinants of Antimicrobial Drug Resistance in Pseudomonas aeruginosa , 2009, Antimicrobial Agents and Chemotherapy.

[74]  L. Christiansen,et al.  Antibiotic Resistance in Pseudomonas aeruginosa Strains with Increased Mutation Frequency Due to Inactivation of the DNA Oxidative Repair System , 2009, Antimicrobial Agents and Chemotherapy.

[75]  M. Feizabadi,et al.  Prevalence of ESBLs genes among multidrug-resistant isolates of Pseudomonas aeruginosa isolated from patients in Tehran. , 2009, Microbial drug resistance.

[76]  P. Nordmann,et al.  Extended-Spectrum Cephalosporinases in Pseudomonas aeruginosa , 2009, Antimicrobial Agents and Chemotherapy.

[77]  Joseph O Matu,et al.  Pseudomonas aeruginosa hypoxic or anaerobic biofilm infections within cystic fibrosis airways. , 2009, Trends in microbiology.

[78]  P. Nordmann,et al.  Further Identification of CTX-M-2 Extended-Spectrum β-Lactamase in Pseudomonas aeruginosa , 2009, Antimicrobial Agents and Chemotherapy.

[79]  Iraida E. Robledo,et al.  Surveillance of Carbapenem-Resistant Pseudomonas aeruginosa Isolates from Puerto Rican Medical Center Hospitals: Dissemination of KPC and IMP-18 β-Lactamases , 2009, Antimicrobial Agents and Chemotherapy.

[80]  M. Maciá,et al.  Azithromycin in Pseudomonas aeruginosa Biofilms: Bactericidal Activity and Selection of nfxB Mutants , 2009, Antimicrobial Agents and Chemotherapy.

[81]  George A. Jacoby,et al.  AmpC β-Lactamases , 2009, Clinical Microbiology Reviews.

[82]  N. R. Morero,et al.  Pseudomonas aeruginosa deficient in 8-oxodeoxyguanine repair system shows a high frequency of resistance to ciprofloxacin. , 2008, FEMS microbiology letters.

[83]  N. Høiby,et al.  Chromosomal mechanisms of aminoglycoside resistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. , 2009, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[84]  J. Bartlett,et al.  Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. , 2009, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[85]  Ronald N. Jones,et al.  Carbapenem Resistance among Pseudomonas aeruginosa Strains from India: Evidence for Nationwide Endemicity of Multiple Metallo-β-Lactamase Clones (VIM-2, -5, -6, and -11 and the Newly Characterized VIM-18) , 2008, Antimicrobial Agents and Chemotherapy.

[86]  V. Jarlier,et al.  Contribution of ParE Mutation and Efflux to Ciprofloxacin Resistance in Pseudomonas aeruginosa Clinical Isolates , 2008, Journal of chemotherapy.

[87]  M. Kaufmann,et al.  Detection of Pseudomonas aeruginosa isolates producing VEB-type extended-spectrum beta-lactamases in the United Kingdom. , 2008, The Journal of antimicrobial chemotherapy.

[88]  P. Nordmann,et al.  Identification of PER-1 extended-spectrum beta-lactamase producing Pseudomonas aeruginosa clinical isolates of the international clonal complex CC11 from Hungary and Serbia. , 2008, FEMS immunology and medical microbiology.

[89]  N. Woodford,et al.  Phenotypic and Enzymatic Comparative Analysis of the Novel KPC Variant KPC-5 and Its Evolutionary Variants, KPC-2 and KPC-4 , 2008, Antimicrobial Agents and Chemotherapy.

[90]  A. Hidrón,et al.  Antimicrobial-Resistant Pathogens Associated With Healthcare-Associated Infections: Annual Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007 , 2008, Infection Control & Hospital Epidemiology.

[91]  N. Høiby,et al.  Spread of colistin resistant non-mucoid Pseudomonas aeruginosa among chronically infected Danish cystic fibrosis patients. , 2008, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[92]  H. Kwon,et al.  Occurrence and mechanisms of amikacin resistance and its association with beta-lactamases in Pseudomonas aeruginosa: a Korean nationwide study. , 2008, The Journal of antimicrobial chemotherapy.

[93]  C. Dowson,et al.  Association between Hypermutator Phenotype, Clinical Variables, Mucoid Phenotype, and Antimicrobial Resistance in Pseudomonas aeruginosa , 2008, Journal of Clinical Microbiology.

[94]  V. Dubois,et al.  Beta-lactam and aminoglycoside resistance rates and mechanisms among Pseudomonas aeruginosa in French general practice (community and private healthcare centres). , 2008, The Journal of antimicrobial chemotherapy.

[95]  Ronald N. Jones,et al.  Complete Sequence of p07-406, a 24,179-Base-Pair Plasmid Harboring the blaVIM-7 Metallo-β-Lactamase Gene in a Pseudomonas aeruginosa Isolate from the United States , 2008, Antimicrobial Agents and Chemotherapy.

[96]  M. Ehlers,et al.  Emergence of class 1 integron-associated GES-5 and GES-5-like extended-spectrum beta-lactamases in clinical isolates of Pseudomonas aeruginosa in South Africa. , 2008, International journal of antimicrobial agents.

[97]  B. Iglewski,et al.  P. aeruginosa Biofilms in CF Infection , 2008, Clinical reviews in allergy & immunology.

[98]  T. Slama Gram-negative antibiotic resistance: there is a price to pay , 2008, Critical care.

[99]  C. van Delden,et al.  Resistance and Virulence of Pseudomonas aeruginosa Clinical Strains Overproducing the MexCD-OprJ Efflux Pump , 2008, Antimicrobial Agents and Chemotherapy.

[100]  T. Mah,et al.  Involvement of a Novel Efflux System in Biofilm-Specific Resistance to Antibiotics , 2008, Journal of bacteriology.

[101]  A. S. Neri,et al.  Antibiotic Therapy against Pseudomonas aeruginosa in Cystic Fibrosis , 2008, Journal of chemotherapy.

[102]  T. Tolker-Nielsen,et al.  Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB‐oprM genes , 2008, Molecular microbiology.

[103]  M. Falagas,et al.  Risk factors associated with the isolation of colistin-resistant Gram-negative bacteria: A matched case-control study , 2008, Critical care medicine.

[104]  Varsha Gupta Metallo beta lactamases in Pseudomonas aeruginosa and Acinetobacter species , 2008, Expert opinion on investigational drugs.

[105]  D. Monnet,et al.  Relationship between Antibiotic Use and Incidence of MexXY-OprM Overproducers among Clinical Isolates of Pseudomonas aeruginosa , 2008, Antimicrobial Agents and Chemotherapy.

[106]  K. Lewis Multidrug tolerance of biofilms and persister cells. , 2008, Current topics in microbiology and immunology.

[107]  Jian Li,et al.  Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. , 2007, The Journal of antimicrobial chemotherapy.

[108]  A. Oliver,et al.  Molecular Epidemiology and Mechanisms of Carbapenem Resistance in Pseudomonas aeruginosa Isolates from Spanish Hospitals , 2007, Antimicrobial Agents and Chemotherapy.

[109]  I. Wiegand,et al.  Resistance Mechanisms of Multiresistant Pseudomonas aeruginosa Strains from Germany and Correlation with Hypermutation , 2007, Antimicrobial Agents and Chemotherapy.

[110]  N. Høiby,et al.  Class A carbapenemases. , 2007, The Journal of antimicrobial chemotherapy.

[111]  M. Maniati,et al.  A highly carbapenem-resistant Pseudomonas aeruginosa isolate with a novel blaVIM-4/blaP1b integron overexpresses two efflux pumps and lacks OprD. , 2007, The Journal of antimicrobial chemotherapy.

[112]  Yohei Doi,et al.  16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides. , 2007, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[113]  K. Bush,et al.  Carbapenemases: the Versatile β-Lactamases , 2007, Clinical Microbiology Reviews.

[114]  D. Paterson,et al.  High Prevalence of Metallo-β-Lactamase and 16S rRNA Methylase Coproduction among Imipenem-Resistant Pseudomonas aeruginosa Isolates in Brazil , 2007, Antimicrobial Agents and Chemotherapy.

[115]  D. Landman,et al.  Role of AmpD, OprF and penicillin-binding proteins in beta-lactam resistance in clinical isolates of Pseudomonas aeruginosa. , 2007, Journal of medical microbiology.

[116]  P. Nordmann,et al.  Extended-spectrum cephalosporinases: structure, detection and epidemiology. , 2007, Future microbiology.

[117]  D. Hocquet,et al.  Susceptibility of Pseudomonas aeruginosa to antimicrobials: a 2004 French multicentre hospital study. , 2007, The Journal of antimicrobial chemotherapy.

[118]  J. Quinn,et al.  Prevalence of AmpC over-expression in bloodstream isolates of Pseudomonas aeruginosa. , 2007, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[119]  B. Markova,et al.  Widespread Detection of VEB-1-Type Extended-Spectrum Beta-Lactamases Among Nosocomial Ceftazidime-Resistant Pseudomonas aeruginosa Isolates in Sofia, Bulgaria , 2007, Journal of chemotherapy.

[120]  Y. Glupczynski,et al.  Emergence and Dissemination of BEL-1-Producing Pseudomonas aeruginosa Isolates in Belgium , 2007, Antimicrobial Agents and Chemotherapy.

[121]  J. Quinn,et al.  First Identification of Pseudomonas aeruginosa Isolates Producing a KPC-Type Carbapenem-Hydrolyzing β-Lactamase , 2007, Antimicrobial Agents and Chemotherapy.

[122]  C. van Delden,et al.  Development and Persistence of Antimicrobial Resistance in Pseudomonas aeruginosa: a Longitudinal Observation in Mechanically Ventilated Patients , 2007, Antimicrobial Agents and Chemotherapy.

[123]  D. Hocquet,et al.  MexAB-OprM- and MexXY-Overproducing Mutants Are Very Prevalent among Clinical Strains of Pseudomonas aeruginosa with Reduced Susceptibility to Ticarcillin , 2007, Antimicrobial Agents and Chemotherapy.

[124]  K. Poole Efflux pumps as antimicrobial resistance mechanisms , 2007, Annals of medicine.

[125]  Samuel I. Miller,et al.  Differentiation and Distribution of Colistin- and Sodium Dodecyl Sulfate-Tolerant Cells in Pseudomonas aeruginosa Biofilms , 2006, Journal of bacteriology.

[126]  B. Duim,et al.  A CTX-M extended-spectrum beta-lactamase in Pseudomonas aeruginosa and Stenotrophomonas maltophilia. , 2006, Journal of medical microbiology.

[127]  K. Poole,et al.  nalD Encodes a Second Repressor of the mexAB-oprM Multidrug Efflux Operon of Pseudomonas aeruginosa , 2006, Journal of bacteriology.

[128]  R. Wunderink,et al.  Severe pseudomonal infections , 2006, Current opinion in critical care.

[129]  D. Paterson The epidemiological profile of infections with multidrug-resistant Pseudomonas aeruginosa and Acinetobacter species. , 2006, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[130]  D. Zhou,et al.  Detection of Extended-Spectrum β-Lactamases in Clinical Isolates of Pseudomonas aeruginosa , 2006, Antimicrobial Agents and Chemotherapy.

[131]  T. Schwartz,et al.  Real-time PCR detection of Pseudomonas aeruginosa in clinical and municipal wastewater and genotyping of the ciprofloxacin-resistant isolates. , 2006, FEMS microbiology ecology.

[132]  T. Tsaganos,et al.  Multidrug resistance to antimicrobials as a predominant factor influencing patient survival. , 2006, International journal of antimicrobial agents.

[133]  David A. D'Argenio,et al.  Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[134]  M. Caccamo,et al.  Spread of blaCTX-M-type and blaPER-2 β-lactamase genes in clinical isolates from Bolivian hospitals , 2006 .

[135]  P. Nordmann,et al.  Complex Genetic Structures with Repeated Elements, a sul-Type Class 1 Integron, and the blaVEB Extended-Spectrum β-Lactamase Gene , 2006, Antimicrobial Agents and Chemotherapy.

[136]  D. Landman,et al.  Interplay of Efflux System, ampC, and oprD Expression in Carbapenem Resistance of Pseudomonas aeruginosa Clinical Isolates , 2006, Antimicrobial Agents and Chemotherapy.

[137]  Didier Hocquet,et al.  Involvement of the MexXY-OprM Efflux System in Emergence of Cefepime Resistance in Clinical Strains of Pseudomonas aeruginosa , 2006, Antimicrobial Agents and Chemotherapy.

[138]  A. Endimiani,et al.  Pseudomonas aeruginosa bloodstream infections: risk factors and treatment outcome related to expression of the PER-1 extended-spectrum beta-lactamase , 2006, BMC infectious diseases.

[139]  A. Ferrara Potentially multidrug-resistant non-fermentative Gram-negative pathogens causing nosocomial pneumonia. , 2006, International journal of antimicrobial agents.

[140]  J. Bartlett,et al.  Bad bugs need drugs: an update on the development pipeline from the Antimicrobial Availability Task Force of the Infectious Diseases Society of America. , 2006, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[141]  M. Maciá,et al.  Molecular Mechanisms of β-Lactam Resistance Mediated by AmpC Hyperproduction in Pseudomonas aeruginosa Clinical Strains , 2005, Antimicrobial Agents and Chemotherapy.

[142]  M. Maniati,et al.  Spread of efflux pump-overexpressing, non-metallo-beta-lactamase-producing, meropenem-resistant but ceftazidime-susceptible Pseudomonas aeruginosa in a region with blaVIM endemicity. , 2005, The Journal of antimicrobial chemotherapy.

[143]  Robert A. Bonomo,et al.  Extended-Spectrum (cid:2) -Lactamases: a Clinical Update , 2005 .

[144]  A. Malik,et al.  Resistance due to aminoglycoside modifying enzymes in Pseudomonas aeruginosa isolates from burns patients. , 2005, The Indian journal of medical research.

[145]  K. Mathee,et al.  Characterization of poxB, a chromosomal-encoded Pseudomonas aeruginosa oxacillinase. , 2005, Gene.

[146]  H. Schweizer,et al.  Molecular Basis of Azithromycin-Resistant Pseudomonas aeruginosa Biofilms , 2005, Antimicrobial Agents and Chemotherapy.

[147]  P. Nordmann,et al.  BEL-1, a Novel Clavulanic Acid-Inhibited Extended-Spectrum β-Lactamase, and the Class 1 Integron In120 in Pseudomonas aeruginosa , 2005, Antimicrobial Agents and Chemotherapy.

[148]  S. Arora,et al.  AmpC beta-lactamase producing bacterial isolates from Kolkata hospital. , 2005, The Indian journal of medical research.

[149]  A. Oliver,et al.  Antimicrobial therapy for pulmonary pathogenic colonisation and infection by Pseudomonas aeruginosa in cystic fibrosis patients. , 2005, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[150]  Michael J. MacCoss,et al.  Aminoglycoside antibiotics induce bacterial biofilm formation , 2005, Nature.

[151]  V. Dubois,et al.  Prolonged Outbreak of Infection Due to TEM-21-Producing Strains of Pseudomonas aeruginosa and Enterobacteria in a Nursing Home , 2005, Journal of Clinical Microbiology.

[152]  A. Oliver,et al.  Hypermutation Is a Key Factor in Development of Multiple-Antimicrobial Resistance in Pseudomonas aeruginosa Strains Causing Chronic Lung Infections , 2005, Antimicrobial Agents and Chemotherapy.

[153]  G. Jacoby Mechanisms of resistance to quinolones. , 2005, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[154]  D. Landman,et al.  Citywide emergence of Pseudomonas aeruginosa strains with reduced susceptibility to polymyxin B. , 2005, The Journal of antimicrobial chemotherapy.

[155]  P. Nordmann,et al.  Acquired Carbapenem-Hydrolyzing β-Lactamases and their Genetic Support - An Update , 2005 .

[156]  M. Maekawa,et al.  Characterization of Fluoroquinolone and Carbapenem Susceptibilities in Clinical Isolates of Levofloxacin-Resistant Pseudomonas aeruginosa , 2005, Chemotherapy.

[157]  Bong Su Kim,et al.  Alterations in the GyrA and GyrB subunits of topoisomerase II and the ParC and ParE subunits of topoisomerase IV in ciprofloxacin-resistant clinical isolates of Pseudomonas aeruginosa. , 2005, International journal of antimicrobial agents.

[158]  K. Poole Aminoglycoside Resistance in Pseudomonas aeruginosa , 2005, Antimicrobial Agents and Chemotherapy.

[159]  M. Kettner,et al.  Incidence and mechanisms of aminoglycoside resistance inPseudomonas aeruginosa serotype O11 isolates , 1995, Infection.

[160]  A. Gales,et al.  IMPs, VIMs and SPMs: the diversity of metallo-beta-lactamases produced by carbapenem-resistant Pseudomonas aeruginosa in a Brazilian hospital. , 2005, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[161]  G. Rossolini,et al.  Treatment and control of severe infections caused by multiresistant Pseudomonas aeruginosa. , 2005, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[162]  J. Karlowsky,et al.  Role of efflux mechanisms on fluoroquinolone resistance in Streptococcus pneumoniae and Pseudomonas aeruginosa. , 2004, International journal of antimicrobial agents.

[163]  Ronald N. Jones,et al.  Integron Carrying a Novel Metallo-β-Lactamase Gene, blaIMP-16, and a Fused Form of Aminoglycoside-Resistant Gene aac(6′)-30/aac(6′)-Ib′: Report from the SENTRY Antimicrobial Surveillance Program , 2004, Antimicrobial Agents and Chemotherapy.

[164]  Ronald N. Jones,et al.  Molecular Characterization of a β-Lactamase Gene, blaGIM-1, Encoding a New Subclass of Metallo-β-Lactamase , 2004, Antimicrobial Agents and Chemotherapy.

[165]  Philip S. Stewart,et al.  Stratified Growth in Pseudomonas aeruginosa Biofilms , 2004, Applied and Environmental Microbiology.

[166]  R. Goering,et al.  Multidrug resistance associated with mexXY expression in clinical isolates of Pseudomonas aeruginosa from a Texas hospital. , 2004, Diagnostic microbiology and infectious disease.

[167]  K. Poole,et al.  MexAB‐OprM hyperexpression in NalC‐type multidrug‐resistant Pseudomonas aeruginosa: identification and characterization of the nalC gene encoding a repressor of PA3720‐PA3719 , 2004, Molecular microbiology.

[168]  K. Poole Resistance to β-lactam antibiotics , 2004, Cellular and Molecular Life Sciences CMLS.

[169]  P. Nordmann,et al.  Biochemical Characterization of the Naturally Occurring Oxacillinase OXA-50 of Pseudomonas aeruginosa , 2004, Antimicrobial Agents and Chemotherapy.

[170]  K. Yokoyama,et al.  Genetic Environments of the rmtA Gene in Pseudomonas aeruginosa Clinical Isolates , 2004, Antimicrobial Agents and Chemotherapy.

[171]  P. Nordmann,et al.  Molecular analysis of metallo-beta-lactamase gene bla(SPM-1)-surrounding sequences from disseminated Pseudomonas aeruginosa isolates in Recife, Brazil. , 2004, Antimicrobial agents and chemotherapy.

[172]  Samuel I. Miller,et al.  PmrAB, a Two-Component Regulatory System of Pseudomonas aeruginosa That Modulates Resistance to Cationic Antimicrobial Peptides and Addition of Aminoarabinose to Lipid A , 2004, Journal of bacteriology.

[173]  N. Caroff,et al.  Detection of an IS21 insertion sequence in the mexR gene of Pseudomonas aeruginosa increasing beta-lactam resistance. , 2004, FEMS microbiology letters.

[174]  J. Bartlett Pocketbook of infectious disease therapy , 2004 .

[175]  P. Stewart,et al.  A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance , 2003, Nature.

[176]  E. Drenkard Antimicrobial resistance of Pseudomonas aeruginosa biofilms. , 2003, Microbes and infection.

[177]  K. Poole,et al.  Contribution of the MexXY Multidrug Transporter to Aminoglycoside Resistance in Pseudomonas aeruginosa Clinical Isolates , 2003, Antimicrobial Agents and Chemotherapy.

[178]  R. Hancock,et al.  Cationic antimicrobial peptides activate a two‐component regulatory system, PmrA‐PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa , 2003, Molecular microbiology.

[179]  Ronald N. Jones,et al.  Molecular and Biochemical Characterization of OXA-45, an Extended-Spectrum Class 2d′ β-Lactamase in Pseudomonas aeruginosa , 2003, Antimicrobial Agents and Chemotherapy.

[180]  J. Verhoef,et al.  Mutations in GyrA, ParC, MexR and NfxB in clinical isolates of Pseudomonas aeruginosa. , 2003, International journal of antimicrobial agents.

[181]  P. Courvalin,et al.  Aminoglycoside Resistance Gene ant(4′)-IIb of Pseudomonas aeruginosa BM4492, a Clinical Isolate from Bulgaria , 2003, Antimicrobial Agents and Chemotherapy.

[182]  R. Bonomo,et al.  β-lactamases: A survey of protein diversity , 2003 .

[183]  P. Nordmann,et al.  Prospective Survey of β-Lactamases Produced by Ceftazidime- Resistant Pseudomonas aeruginosa Isolated in a French Hospital in 2000 , 2002, Antimicrobial Agents and Chemotherapy.

[184]  K. Poole Outer membranes and efflux: the path to multidrug resistance in Gram-negative bacteria. , 2002, Current pharmaceutical biotechnology.

[185]  A. Oliver,et al.  The mismatch repair system (mutS, mutL and uvrD genes) in Pseudomonas aeruginosa: molecular characterization of naturally occurring mutants , 2002, Molecular microbiology.

[186]  T. Nishino,et al.  Alterations of susceptibility of Pseudomonas aeruginosa by overproduction of multidrug efflux systems, MexAB-OprM, MexCD-OprJ, and MexXY/OprM to carbapenems: substrate specificities of the efflux systems , 2002, Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy.

[187]  P. Nordmann,et al.  Oxacillinase-Mediated Resistance to Cefepime and Susceptibility to Ceftazidime in Pseudomonas aeruginosa , 2001, Antimicrobial Agents and Chemotherapy.

[188]  G. Rossolini,et al.  In70 of Plasmid pAX22, ablaVIM-1-Containing Integron Carrying a New Aminoglycoside Phosphotransferase Gene Cassette , 2001, Antimicrobial Agents and Chemotherapy.

[189]  N. Gotoh,et al.  Carbapenem Resistance Mechanisms in Pseudomonas aeruginosa Clinical Isolates , 2001, Antimicrobial Agents and Chemotherapy.

[190]  P. Nordmann,et al.  Characterization of Class 1 Integrons from Pseudomonas aeruginosa That Contain the blaVIM-2Carbapenem-Hydrolyzing β-Lactamase Gene and of Two Novel Aminoglycoside Resistance Gene Cassettes , 2001, Antimicrobial Agents and Chemotherapy.

[191]  N. Masuda,et al.  Substrate Specificities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM Efflux Pumps in Pseudomonas aeruginosa , 2000, Antimicrobial Agents and Chemotherapy.

[192]  T. Nakae,et al.  Variation of the mexT gene, a regulator of the MexEF-oprN efflux pump expression in wild-type strains of Pseudomonas aeruginosa. , 2000, FEMS microbiology letters.

[193]  R. Hancock,et al.  Role of Pseudomonas aeruginosa PhoP-phoQ in resistance to antimicrobial cationic peptides and aminoglycosides. , 2000, Microbiology.

[194]  K. Poole Efflux-Mediated Resistance to Fluoroquinolones in Gram-Negative Bacteria , 2000, Antimicrobial Agents and Chemotherapy.

[195]  A. Oliver,et al.  High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. , 2000, Science.

[196]  K. Poole,et al.  Influence of Mutations in the mexR Repressor Gene on Expression of the MexA-MexB-OprM Multidrug Efflux System ofPseudomonas aeruginosa , 2000, Journal of bacteriology.

[197]  N. Høiby,et al.  Molecular Mechanisms of Fluoroquinolone Resistance in Pseudomonas aeruginosa Isolates from Cystic Fibrosis Patients , 2000, Antimicrobial Agents and Chemotherapy.

[198]  J. Burns,et al.  Aminoglycoside-resistance mechanisms for cystic fibrosis Pseudomonas aeruginosa isolates are unchanged by long-term, intermittent, inhaled tobramycin treatment. , 2000, The Journal of infectious diseases.

[199]  J. Burns,et al.  Activities of Tobramycin and Six Other Antibiotics against Pseudomonas aeruginosa Isolates from Patients with Cystic Fibrosis , 1999, Antimicrobial Agents and Chemotherapy.

[200]  S. Miller,et al.  Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa. , 1999, Science.

[201]  D. Livermore,et al.  OXA-17, a Further Extended-Spectrum Variant of OXA-10 β-Lactamase, Isolated from Pseudomonas aeruginosa , 1999, Antimicrobial Agents and Chemotherapy.

[202]  R. Hancock,et al.  Negative Regulation of the Pseudomonas aeruginosa Outer Membrane Porin OprD Selective for Imipenem and Basic Amino Acids , 1999, Antimicrobial Agents and Chemotherapy.

[203]  M. Yasuda,et al.  Mutations in the gyrA and parC genes in fluoroquinolone-resistant clinical isolates of Pseudomonas aeruginosa , 1997, Antimicrobial agents and chemotherapy.

[204]  K. Drlica,et al.  DNA gyrase, topoisomerase IV, and the 4-quinolones , 1997, Microbiology and molecular biology reviews : MMBR.

[205]  N. Gotoh,et al.  Characterization of MexE–MexF–OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa , 1997, Molecular microbiology.

[206]  K. Poole,et al.  Overexpression of the mexC–mexD–oprJ efflux operon in nfxB‐type multidrug‐resistant strains of Pseudomonas aeruginosa , 1996, Molecular microbiology.

[207]  F. Kayser,et al.  Sequence and characterization of a novel chromosomal aminoglycoside phosphotransferase gene, aph (3')-IIb, in Pseudomonas aeruginosa , 1996, Antimicrobial agents and chemotherapy.

[208]  B. Bannister Pocket book of infectious diseases therapy , 1996 .

[209]  D. Livermore beta-Lactamases in laboratory and clinical resistance , 1995, Clinical microbiology reviews.

[210]  T. Nishino,et al.  nfxC-type quinolone resistance in a clinical isolate of Pseudomonas aeruginosa , 1995, Antimicrobial agents and chemotherapy.

[211]  Resistance to aminoglycosides in Pseudomonas. Aminoglycoside Resistance Study Groups. , 1994, Trends in microbiology.

[212]  P. Courvalin,et al.  Characterization of the aac(6')-Ib gene encoding an aminoglycoside 6'-N-acetyltransferase in Pseudomonas aeruginosa BM2656 , 1993, Antimicrobial Agents and Chemotherapy.

[213]  P. Rather,et al.  Nucleotide sequence analysis and DNA hybridization studies of the ant(4')-IIa gene from Pseudomonas aeruginosa , 1993, Antimicrobial Agents and Chemotherapy.

[214]  D. Livermore Interplay of impermeability and chromosomal beta-lactamase activity in imipenem-resistant Pseudomonas aeruginosa , 1992, Antimicrobial Agents and Chemotherapy.

[215]  S. Busby,et al.  Cloning, sequencing and analysis of the structural gene and regulatory region of the Pseudomonas aeruginosa chromosomal ampC beta-lactamase. , 1990, The Biochemical journal.

[216]  A. Yamaguchi,et al.  Characteristics of aztreonam as a substrate, inhibitor and inducer for beta-lactamases. , 1990, The Journal of antibiotics.

[217]  H. Nikaido,et al.  Outer membrane protein D2 catalyzes facilitated diffusion of carbapenems and penems through the outer membrane of Pseudomonas aeruginosa , 1990, Antimicrobial Agents and Chemotherapy.

[218]  D. Livermore,et al.  β-Lactamase Lability and Inducer Power of Newer β-Lactam Antibiotics in Relation to Their Activity Against β-Lactamase-Inducibility Mutants of Pseudomonas aeruginosa , 1987 .

[219]  D. Livermore β-Lactamases of Pseudomonas aeruginosa , 1991 .

[220]  J Davies,et al.  Aminoglycoside-modifying enzymes. , 1979, International journal of clinical pharmacology and biopharmacy.

[221]  L. Bryan,et al.  Gentamicin resistance in clinical-isolates of Pseudomonas aeruginosa associated with diminished gentamicin accumulation and no detectable enzymatic modification. , 1976, The Journal of antibiotics.

[222]  J. Davies,et al.  Enzymatic Modification of Aminoglycoside Antibiotics: a New 6′-N-Acetylating Enzyme from a Pseudomonas aeruginosa Isolate , 1976, Antimicrobial Agents and Chemotherapy.

[223]  J. Davies,et al.  Enzymatic Modification of Aminoglycoside Antibiotics: a New 3-N-Acetylating Enzyme from a Pseudomonas aeruginosa Isolate , 1976, Antimicrobial Agents and Chemotherapy.

[224]  M. Bassetti,et al.  Multidrug-resistant Pseudomonas aeruginosa bloodstream infections: risk factors and mortality , 2011, Epidemiology and Infection.

[225]  K. Mertens,et al.  Clinical outcomes of health-care-associated infections and antimicrobial resistance in patients admitted to European intensive-care units: a cohort study. , 2011, The Lancet. Infectious diseases.

[226]  A. Oliver Mutators in cystic fibrosis chronic lung infection: Prevalence, mechanisms, and consequences for antimicrobial therapy. , 2010, International journal of medical microbiology : IJMM.

[227]  P. Mahar,et al.  Pseudomonas aeruginosa bacteraemia in burns patients: Risk factors and outcomes. , 2010, Burns : journal of the International Society for Burn Injuries.

[228]  T. Walsh Emerging carbapenemases: a global perspective. , 2010, International journal of antimicrobial agents.

[229]  S. Lory,et al.  Emergence of Pseudomonas aeruginosa Strains Producing High Levels of Persister Cells in Patients with Cystic Fibrosis , 2010, Journal of bacteriology.

[230]  D. Hospenthal,et al.  Prevalence of multidrug-resistant organisms recovered at a military burn center. , 2010, Burns : journal of the International Society for Burn Injuries.

[231]  S. Mody,et al.  Imipenem resistance of Pseudomonas in pneumonia: a systematic literature review , 2010, BMC pulmonary medicine.

[232]  A. Gales,et al.  Efflux pumps expression and its association with porin down-regulation and β-lactamase production among Pseudomonas aeruginosa causing bloodstream infections in Brazil , 2010, BMC Microbiology.

[233]  T. Tolker-Nielsen,et al.  An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal. , 2010, FEMS immunology and medical microbiology.

[234]  W. Witte,et al.  Resistance to cephalosporins and carbapenems in Gram-negative bacterial pathogens. , 2010, International journal of medical microbiology : IJMM.

[235]  V. Tam,et al.  Impact of multidrug-resistant Pseudomonas aeruginosa infection on patient outcomes , 2010, Expert review of pharmacoeconomics & outcomes research.

[236]  X. Xu,et al.  Distribution of 16S rRNA methylases among different species of Gram-negative bacilli with high-level resistance to aminoglycosides , 2010, European Journal of Clinical Microbiology & Infectious Diseases.

[237]  K. Bush,et al.  Differential Selection of Single-Step AmpC or Efflux Mutants of Pseudomonas aeruginosa by Using Cefepime, Ceftazidime, or Ceftobiprole , 2010, Antimicrobial Agents and Chemotherapy.

[238]  T. Kiser,et al.  Efflux Pump Contribution to Multidrug Resistance in Clinical Isolates of Pseudomonas aeruginosa , 2010, Pharmacotherapy.

[239]  A. Oliver,et al.  Bacterial hypermutation in cystic fibrosis, not only for antibiotic resistance. , 2010, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[240]  M. Falagas,et al.  In vitro susceptibility to various antibiotics of colistin-resistant gram-negative bacterial isolates in a general tertiary hospital in Crete, Greece. , 2010, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[241]  T. Qu,et al.  Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa isolates from Chinese hospitals. , 2010, International journal of antimicrobial agents.

[242]  P. Nordmann,et al.  Emergence of KPC-Producing Pseudomonas aeruginosa in the United States , 2010, Antimicrobial Agents and Chemotherapy.

[243]  E. M. Mamizuka,et al.  Balanoposthitis caused by Pseudomonas aeruginosa co-producing metallo-beta-lactamase and 16S rRNA methylase in children with hematological malignancies. , 2010, International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases.

[244]  Petra Tielen,et al.  Contribution of oxygen-limiting conditions to persistent infection of Pseudomonas aeruginosa. , 2010, Future microbiology.

[245]  A. Hidrón,et al.  Multidrug Resistance among Gram-Negative Pathogens That Caused Healthcare-Associated Infections Reported to the National Healthcare Safety Network, 2006–2008 , 2010, Infection Control & Hospital Epidemiology.

[246]  V. Tam,et al.  Prevalence, Resistance Mechanisms, and Susceptibility of Multidrug-Resistant Bloodstream Isolates of Pseudomonas aeruginosa , 2010, Antimicrobial Agents and Chemotherapy.

[247]  V. Miriagou,et al.  GES-13, a β-Lactamase Variant Possessing Lys-104 and Asn-170 in Pseudomonas aeruginosa , 2010, Antimicrobial Agents and Chemotherapy.

[248]  K. Kerr,et al.  Pseudomonas aeruginosa: a formidable and ever-present adversary. , 2009, The Journal of hospital infection.

[249]  P. Nordmann,et al.  BEL-2, an Extended-Spectrum β-Lactamase with Increased Activity toward Expanded-Spectrum Cephalosporins in Pseudomonas aeruginosa , 2009, Antimicrobial Agents and Chemotherapy.

[250]  Ronald N. Jones,et al.  Antipseudomonal activity of piperacillin/tazobactam: more than a decade of experience from the SENTRY Antimicrobial Surveillance Program (1997-2007). , 2009, Diagnostic microbiology and infectious disease.

[251]  L. Poirel,et al.  Emergence of SHV-2a extended-spectrum beta-lactamases in clinical isolates of Pseudomonas aeruginosa in a university hospital in Tunisia. , 2009, Microbial drug resistance.

[252]  M. Page,et al.  Prospects for the next anti-Pseudomonas drug. , 2009, Current opinion in pharmacology.

[253]  Nancy D. Hanson,et al.  Antibacterial-Resistant Pseudomonas aeruginosa: Clinical Impact and Complex Regulation of Chromosomally Encoded Resistance Mechanisms , 2009, Clinical Microbiology Reviews.

[254]  A. Oliver,et al.  Detection of the Novel Extended-Spectrum β-Lactamase OXA-161 from a Plasmid-Located Integron in Pseudomonas aeruginosa Clinical Isolates from Spain , 2009, Antimicrobial Agents and Chemotherapy.

[255]  A. Oliver,et al.  Nosocomial Spread of Colistin-Only-Sensitive Sequence Type 235 Pseudomonas aeruginosa Isolates Producing the Extended-Spectrum β-Lactamases GES-1 and GES-5 in Spain , 2009, Antimicrobial Agents and Chemotherapy.

[256]  P. Nordmann,et al.  Molecular Epidemiology and Mechanisms of Carbapenem Resistance in Pseudomonas aeruginosa , 2009, Antimicrobial Agents and Chemotherapy.

[257]  Daniel Yordanov,et al.  Pseudomonas aeruginosa - a phenomenon of bacterial resistance. , 2009, Journal of medical microbiology.

[258]  E. Änggård,et al.  A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic‐resistant Pseudomonas aeruginosa; a preliminary report of efficacy , 2009, Clinical otolaryngology : official journal of ENT-UK ; official journal of Netherlands Society for Oto-Rhino-Laryngology & Cervico-Facial Surgery.

[259]  Wei-hua Zhao,et al.  Relevance of resistance levels to carbapenems and integron-borne blaIMP-1, blaIMP-7, blaIMP-10 and blaVIM-2 in clinical isolates of Pseudomonas aeruginosa. , 2009, Journal of medical microbiology.

[260]  P. Nordmann,et al.  Diversity of β-Lactamases Produced by Ceftazidime-Resistant Pseudomonas aeruginosa Isolates Causing Bloodstream Infections in Brazil , 2009, Antimicrobial Agents and Chemotherapy.

[261]  D. Hocquet,et al.  Emergence of extensive-drug-resistant Pseudomonas aeruginosa in a French university hospital , 2009, European Journal of Clinical Microbiology & Infectious Diseases.

[262]  J. Rello,et al.  Pseudomonas aeruginosa virulence and therapy: Evolving translational strategies* , 2009, Critical care medicine.

[263]  Je Chul Lee,et al.  Emergence of 16S rRNA methylase rmtA in colistin-only-sensitive Pseudomonas aeruginosa in South Korea. , 2009, International journal of antimicrobial agents.

[264]  J. Davies,et al.  Bugs, biofilms, and resistance in cystic fibrosis. , 2009, Respiratory care.

[265]  A. Shorr Review of studies of the impact on Gram-negative bacterial resistance on outcomes in the intensive care unit* , 2009, Critical care medicine.

[266]  L. Christiansen,et al.  Antibiotic Resistance in Pseudomonas aeruginosa Strains with Increased Mutation Frequency Due to Inactivation of the DNA Oxidative Repair System , 2009, Antimicrobial Agents and Chemotherapy.

[267]  C. Pommerenke,et al.  Genomewide Identification of Genetic Determinants of Antimicrobial Drug Resistance in Pseudomonas aeruginosa , 2009, Antimicrobial Agents and Chemotherapy.

[268]  M. Feizabadi,et al.  Prevalence of ESBLs genes among multidrug-resistant isolates of Pseudomonas aeruginosa isolated from patients in Tehran. , 2009, Microbial drug resistance.

[269]  P. Nordmann,et al.  Extended-Spectrum Cephalosporinases in Pseudomonas aeruginosa , 2009, Antimicrobial Agents and Chemotherapy.

[270]  Joseph O Matu,et al.  Pseudomonas aeruginosa hypoxic or anaerobic biofilm infections within cystic fibrosis airways. , 2009, Trends in microbiology.

[271]  P. Nordmann,et al.  Further Identification of CTX-M-2 Extended-Spectrum β-Lactamase in Pseudomonas aeruginosa , 2009, Antimicrobial Agents and Chemotherapy.

[272]  E. Dobreva Extended-spectrum β-lactamases in Pseudomonas aeruginosa. , 2009 .

[273]  N. Høiby,et al.  Chromosomal mechanisms of aminoglycoside resistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. , 2009, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[274]  V. Jarlier,et al.  Contribution of ParE Mutation and Efflux to Ciprofloxacin Resistance in Pseudomonas aeruginosa Clinical Isolates , 2008, Journal of chemotherapy.

[275]  M. Kaufmann,et al.  Detection of Pseudomonas aeruginosa isolates producing VEB-type extended-spectrum beta-lactamases in the United Kingdom. , 2008, The Journal of antimicrobial chemotherapy.

[276]  P. Nordmann,et al.  Identification of PER-1 extended-spectrum beta-lactamase producing Pseudomonas aeruginosa clinical isolates of the international clonal complex CC11 from Hungary and Serbia. , 2008, FEMS immunology and medical microbiology.

[277]  N. Woodford,et al.  Phenotypic and Enzymatic Comparative Analysis of the Novel KPC Variant KPC-5 and Its Evolutionary Variants, KPC-2 and KPC-4 , 2008, Antimicrobial Agents and Chemotherapy.

[278]  A. Hidrón,et al.  Antimicrobial-Resistant Pathogens Associated With Healthcare-Associated Infections: Annual Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007 , 2008, Infection Control & Hospital Epidemiology.

[279]  N. Høiby,et al.  Spread of colistin resistant non-mucoid Pseudomonas aeruginosa among chronically infected Danish cystic fibrosis patients. , 2008, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[280]  H. Kwon,et al.  Occurrence and mechanisms of amikacin resistance and its association with beta-lactamases in Pseudomonas aeruginosa: a Korean nationwide study. , 2008, The Journal of antimicrobial chemotherapy.

[281]  C. Dowson,et al.  Association between Hypermutator Phenotype, Clinical Variables, Mucoid Phenotype, and Antimicrobial Resistance in Pseudomonas aeruginosa , 2008, Journal of Clinical Microbiology.

[282]  Ronald N. Jones,et al.  Complete Sequence of p07-406, a 24,179-Base-Pair Plasmid Harboring the blaVIM-7 Metallo-β-Lactamase Gene in a Pseudomonas aeruginosa Isolate from the United States , 2008, Antimicrobial Agents and Chemotherapy.

[283]  M. Ehlers,et al.  Emergence of class 1 integron-associated GES-5 and GES-5-like extended-spectrum beta-lactamases in clinical isolates of Pseudomonas aeruginosa in South Africa. , 2008, International journal of antimicrobial agents.

[284]  B. Iglewski,et al.  P. aeruginosa Biofilms in CF Infection , 2008, Clinical reviews in allergy & immunology.

[285]  T. Slama Gram-negative antibiotic resistance: there is a price to pay , 2008, Critical care.

[286]  C. van Delden,et al.  Resistance and Virulence of Pseudomonas aeruginosa Clinical Strains Overproducing the MexCD-OprJ Efflux Pump , 2008, Antimicrobial Agents and Chemotherapy.

[287]  T. Mah,et al.  Involvement of a Novel Efflux System in Biofilm-Specific Resistance to Antibiotics , 2008, Journal of bacteriology.

[288]  A. S. Neri,et al.  Antibiotic Therapy against Pseudomonas aeruginosa in Cystic Fibrosis , 2008, Journal of chemotherapy.

[289]  T. Tolker-Nielsen,et al.  Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB‐oprM genes , 2008, Molecular microbiology.

[290]  M. Falagas,et al.  Risk factors associated with the isolation of colistin-resistant Gram-negative bacteria: A matched case-control study , 2008, Critical care medicine.

[291]  D. Monnet,et al.  Relationship between Antibiotic Use and Incidence of MexXY-OprM Overproducers among Clinical Isolates of Pseudomonas aeruginosa , 2008, Antimicrobial Agents and Chemotherapy.

[292]  Y. Fa Polymyxin B for the treatment of multidrug-resistant pathogens:a critical review , 2008 .

[293]  K. Lewis Multidrug tolerance of biofilms and persister cells. , 2008, Current topics in microbiology and immunology.

[294]  I. Wiegand,et al.  Resistance Mechanisms of Multiresistant Pseudomonas aeruginosa Strains from Germany and Correlation with Hypermutation , 2007, Antimicrobial Agents and Chemotherapy.

[295]  N. Høiby,et al.  Class A carbapenemases. , 2007, The Journal of antimicrobial chemotherapy.

[296]  M. Maniati,et al.  A highly carbapenem-resistant Pseudomonas aeruginosa isolate with a novel blaVIM-4/blaP1b integron overexpresses two efflux pumps and lacks OprD. , 2007, The Journal of antimicrobial chemotherapy.

[297]  Yohei Doi,et al.  16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides. , 2007, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[298]  D. Paterson,et al.  High Prevalence of Metallo-β-Lactamase and 16S rRNA Methylase Coproduction among Imipenem-Resistant Pseudomonas aeruginosa Isolates in Brazil , 2007, Antimicrobial Agents and Chemotherapy.

[299]  P. Nordmann,et al.  Extended-spectrum cephalosporinases: structure, detection and epidemiology. , 2007, Future microbiology.

[300]  J. Quinn,et al.  Prevalence of AmpC over-expression in bloodstream isolates of Pseudomonas aeruginosa. , 2007, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[301]  B. Markova,et al.  Widespread Detection of VEB-1-Type Extended-Spectrum Beta-Lactamases Among Nosocomial Ceftazidime-Resistant Pseudomonas aeruginosa Isolates in Sofia, Bulgaria , 2007, Journal of chemotherapy.

[302]  J. Quinn,et al.  First Identification of Pseudomonas aeruginosa Isolates Producing a KPC-Type Carbapenem-Hydrolyzing β-Lactamase , 2007, Antimicrobial Agents and Chemotherapy.

[303]  C. van Delden,et al.  Development and Persistence of Antimicrobial Resistance in Pseudomonas aeruginosa: a Longitudinal Observation in Mechanically Ventilated Patients , 2007, Antimicrobial Agents and Chemotherapy.

[304]  D. Hocquet,et al.  MexAB-OprM- and MexXY-Overproducing Mutants Are Very Prevalent among Clinical Strains of Pseudomonas aeruginosa with Reduced Susceptibility to Ticarcillin , 2007, Antimicrobial Agents and Chemotherapy.

[305]  K. Poole Efflux pumps as antimicrobial resistance mechanisms , 2007, Annals of medicine.

[306]  R. Wunderink,et al.  Severe pseudomonal infections , 2006, Current opinion in critical care.

[307]  D. Paterson The epidemiological profile of infections with multidrug-resistant Pseudomonas aeruginosa and Acinetobacter species. , 2006, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[308]  David A. D'Argenio,et al.  Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[309]  P. Nordmann,et al.  Complex Genetic Structures with Repeated Elements, a sul-Type Class 1 Integron, and the blaVEB Extended-Spectrum β-Lactamase Gene , 2006, Antimicrobial Agents and Chemotherapy.

[310]  D. Landman,et al.  Interplay of Efflux System, ampC, and oprD Expression in Carbapenem Resistance of Pseudomonas aeruginosa Clinical Isolates , 2006, Antimicrobial Agents and Chemotherapy.

[311]  Didier Hocquet,et al.  Involvement of the MexXY-OprM Efflux System in Emergence of Cefepime Resistance in Clinical Strains of Pseudomonas aeruginosa , 2006, Antimicrobial Agents and Chemotherapy.

[312]  J. Bartlett,et al.  Bad bugs need drugs: an update on the development pipeline from the Antimicrobial Availability Task Force of the Infectious Diseases Society of America. , 2006, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[313]  M. Maciá,et al.  Molecular Mechanisms of β-Lactam Resistance Mediated by AmpC Hyperproduction in Pseudomonas aeruginosa Clinical Strains , 2005, Antimicrobial Agents and Chemotherapy.

[314]  M. Maniati,et al.  Spread of efflux pump-overexpressing, non-metallo-beta-lactamase-producing, meropenem-resistant but ceftazidime-susceptible Pseudomonas aeruginosa in a region with blaVIM endemicity. , 2005, The Journal of antimicrobial chemotherapy.

[315]  A. Malik,et al.  Resistance due to aminoglycoside modifying enzymes in Pseudomonas aeruginosa isolates from burns patients. , 2005, The Indian journal of medical research.

[316]  K. Mathee,et al.  Characterization of poxB, a chromosomal-encoded Pseudomonas aeruginosa oxacillinase. , 2005, Gene.

[317]  G. Jacoby Mechanisms of resistance to quinolones. , 2005, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[318]  D. Landman,et al.  Citywide emergence of Pseudomonas aeruginosa strains with reduced susceptibility to polymyxin B. , 2005, The Journal of antimicrobial chemotherapy.

[319]  P. Nordmann,et al.  Acquired Carbapenem-Hydrolyzing β-Lactamases and their Genetic Support - An Update , 2005 .

[320]  M. Maekawa,et al.  Characterization of Fluoroquinolone and Carbapenem Susceptibilities in Clinical Isolates of Levofloxacin-Resistant Pseudomonas aeruginosa , 2005, Chemotherapy.

[321]  Bong Su Kim,et al.  Alterations in the GyrA and GyrB subunits of topoisomerase II and the ParC and ParE subunits of topoisomerase IV in ciprofloxacin-resistant clinical isolates of Pseudomonas aeruginosa. , 2005, International journal of antimicrobial agents.

[322]  K. Poole Aminoglycoside Resistance in Pseudomonas aeruginosa , 2005, Antimicrobial Agents and Chemotherapy.

[323]  A. Gales,et al.  IMPs, VIMs and SPMs: the diversity of metallo-beta-lactamases produced by carbapenem-resistant Pseudomonas aeruginosa in a Brazilian hospital. , 2005, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[324]  G. Rossolini,et al.  Treatment and control of severe infections caused by multiresistant Pseudomonas aeruginosa. , 2005, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[325]  J. Karlowsky,et al.  Role of efflux mechanisms on fluoroquinolone resistance in Streptococcus pneumoniae and Pseudomonas aeruginosa. , 2004, International journal of antimicrobial agents.

[326]  R. Goering,et al.  Multidrug resistance associated with mexXY expression in clinical isolates of Pseudomonas aeruginosa from a Texas hospital. , 2004, Diagnostic microbiology and infectious disease.

[327]  K. Poole Resistance to β-lactam antibiotics , 2004, Cellular and Molecular Life Sciences CMLS.

[328]  K. Yokoyama,et al.  Genetic Environments of the rmtA Gene in Pseudomonas aeruginosa Clinical Isolates , 2004, Antimicrobial Agents and Chemotherapy.

[329]  Samuel I. Miller,et al.  PmrAB, a Two-Component Regulatory System of Pseudomonas aeruginosa That Modulates Resistance to Cationic Antimicrobial Peptides and Addition of Aminoarabinose to Lipid A , 2004, Journal of bacteriology.

[330]  J. Ramos Genomics, life style and molecular architecture , 2004 .

[331]  E. Drenkard Antimicrobial resistance of Pseudomonas aeruginosa biofilms. , 2003, Microbes and infection.

[332]  K. Poole,et al.  Contribution of the MexXY Multidrug Transporter to Aminoglycoside Resistance in Pseudomonas aeruginosa Clinical Isolates , 2003, Antimicrobial Agents and Chemotherapy.

[333]  Ronald N. Jones,et al.  Molecular and Biochemical Characterization of OXA-45, an Extended-Spectrum Class 2d′ β-Lactamase in Pseudomonas aeruginosa , 2003, Antimicrobial Agents and Chemotherapy.

[334]  J. Verhoef,et al.  Mutations in GyrA, ParC, MexR and NfxB in clinical isolates of Pseudomonas aeruginosa. , 2003, International journal of antimicrobial agents.

[335]  P. Courvalin,et al.  Aminoglycoside Resistance Gene ant(4′)-IIb of Pseudomonas aeruginosa BM4492, a Clinical Isolate from Bulgaria , 2003, Antimicrobial Agents and Chemotherapy.

[336]  R. Bonomo,et al.  β-lactamases: A survey of protein diversity , 2003 .

[337]  P. Nordmann,et al.  Prospective Survey of β-Lactamases Produced by Ceftazidime- Resistant Pseudomonas aeruginosa Isolated in a French Hospital in 2000 , 2002, Antimicrobial Agents and Chemotherapy.

[338]  K. Poole Outer membranes and efflux: the path to multidrug resistance in Gram-negative bacteria. , 2002, Current pharmaceutical biotechnology.

[339]  T. Nishino,et al.  Alterations of susceptibility of Pseudomonas aeruginosa by overproduction of multidrug efflux systems, MexAB-OprM, MexCD-OprJ, and MexXY/OprM to carbapenems: substrate specificities of the efflux systems , 2002, Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy.

[340]  G. Rossolini,et al.  In70 of Plasmid pAX22, ablaVIM-1-Containing Integron Carrying a New Aminoglycoside Phosphotransferase Gene Cassette , 2001, Antimicrobial Agents and Chemotherapy.

[341]  N. Gotoh,et al.  Carbapenem Resistance Mechanisms in Pseudomonas aeruginosa Clinical Isolates , 2001, Antimicrobial Agents and Chemotherapy.

[342]  P. Nordmann,et al.  Characterization of Class 1 Integrons from Pseudomonas aeruginosa That Contain the blaVIM-2Carbapenem-Hydrolyzing β-Lactamase Gene and of Two Novel Aminoglycoside Resistance Gene Cassettes , 2001, Antimicrobial Agents and Chemotherapy.

[343]  T. Nakae,et al.  Variation of the mexT gene, a regulator of the MexEF-oprN efflux pump expression in wild-type strains of Pseudomonas aeruginosa. , 2000, FEMS microbiology letters.

[344]  R. Hancock,et al.  Role of Pseudomonas aeruginosa PhoP-phoQ in resistance to antimicrobial cationic peptides and aminoglycosides. , 2000, Microbiology.

[345]  K. Poole Efflux-Mediated Resistance to Fluoroquinolones in Gram-Negative Bacteria , 2000, Antimicrobial Agents and Chemotherapy.

[346]  J. Burns,et al.  Activities of Tobramycin and Six Other Antibiotics against Pseudomonas aeruginosa Isolates from Patients with Cystic Fibrosis , 1999, Antimicrobial Agents and Chemotherapy.

[347]  D. Livermore,et al.  OXA-17, a Further Extended-Spectrum Variant of OXA-10 β-Lactamase, Isolated from Pseudomonas aeruginosa , 1999, Antimicrobial Agents and Chemotherapy.

[348]  R. Hancock,et al.  Negative Regulation of the Pseudomonas aeruginosa Outer Membrane Porin OprD Selective for Imipenem and Basic Amino Acids , 1999, Antimicrobial Agents and Chemotherapy.

[349]  Ronald N. Jones,et al.  Important and emerging beta-lactamase-mediated resistances in hospital-based pathogens: the Amp C enzymes. , 1998, Diagnostic microbiology and infectious disease.

[350]  M. Yasuda,et al.  Mutations in the gyrA and parC genes in fluoroquinolone-resistant clinical isolates of Pseudomonas aeruginosa , 1997, Antimicrobial agents and chemotherapy.

[351]  N. Gotoh,et al.  Characterization of MexE–MexF–OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa , 1997, Molecular microbiology.

[352]  D. Livermore beta-Lactamases in laboratory and clinical resistance , 1995, Clinical microbiology reviews.

[353]  P. Rather,et al.  Nucleotide sequence analysis and DNA hybridization studies of the ant(4')-IIa gene from Pseudomonas aeruginosa , 1993, Antimicrobial Agents and Chemotherapy.

[354]  D. Livermore Interplay of impermeability and chromosomal beta-lactamase activity in imipenem-resistant Pseudomonas aeruginosa , 1992, Antimicrobial Agents and Chemotherapy.

[355]  D. Livermore β-Lactamases of Pseudomonas aeruginosa , 1991 .

[356]  H. Nikaido,et al.  Outer membrane protein D2 catalyzes facilitated diffusion of carbapenems and penems through the outer membrane of Pseudomonas aeruginosa , 1990, Antimicrobial Agents and Chemotherapy.