Mechanical Properties of Carbon Nanotubes

[1]  Rodney S. Ruoff,et al.  Controlled Sliding and Pullout of Nested Shells in Individual Multiwalled Carbon Nanotubes , 2000 .

[2]  Yoon,et al.  Crossed nanotube junctions , 2000, Science.

[3]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[4]  Boris I. Yakobson,et al.  Atomistic theory of mechanical relaxation in fullerene nanotubes , 2000 .

[5]  Susan B. Sinnott,et al.  MOLECULAR DYNAMICS OF CARBON NANOTUBULE PROXIMAL PROBE TIP-SURFACE CONTACTS , 1999 .

[6]  P. Avouris,et al.  Ring Formation in Single-Wall Carbon Nanotubes , 1999 .

[7]  Deron A. Walters,et al.  Elastic strain of freely suspended single-wall carbon nanotube ropes , 1999 .

[8]  Madhu Menon,et al.  NANOPLASTICITY OF SINGLE-WALL CARBON NANOTUBES UNDER UNIAXIAL COMPRESSION , 1999 .

[9]  Phaedon Avouris,et al.  Rings of single-walled carbon nanotubes , 1999, Nature.

[10]  W. D. Heer,et al.  Electrostatic deflections and electromechanical resonances of carbon nanotubes , 1999, Science.

[11]  Herbert Shea,et al.  Carbon nanotubes: nanomechanics, manipulation, and electronic devices , 1999 .

[12]  G. A. D. Briggs,et al.  Elastic and shear moduli of single-walled carbon nanotube ropes , 1999 .

[13]  A. Rubio,et al.  AB INITIO STRUCTURAL, ELASTIC, AND VIBRATIONAL PROPERTIES OF CARBON NANOTUBES , 1999 .

[14]  P. Bernier,et al.  Elastic properties of single-wall nanotubes , 1998, cond-mat/9811257.

[15]  V. Crespi,et al.  Plastic Deformations of Carbon Nanotubes , 1998 .

[16]  M. Nardelli,et al.  Brittle and Ductile Behavior in Carbon Nanotubes , 1998 .

[17]  Erik Dujardin,et al.  Young's modulus of single-walled nanotubes , 1998 .

[18]  Phaedon Avouris,et al.  Deformation of carbon nanotubes by surface van der Waals forces , 1998 .

[19]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[20]  S. Roth,et al.  Scanning force microscopy characterization of individual carbon nanotubes on electrode arrays , 1998 .

[21]  Susan B. Sinnott,et al.  INTERACTIONS OF CARBON-NANOTUBULE PROXIMAL PROBE TIPS WITH DIAMOND AND GRAPHENE , 1998 .

[22]  H. Wagner,et al.  Buckling and Collapse of Embedded Carbon Nanotubes , 1998 .

[23]  R. Smalley,et al.  The future of the fullerenes , 1998 .

[24]  Reshef Tenne,et al.  Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix , 1998 .

[25]  Boris I. Yakobson,et al.  Mechanical relaxation and “intramolecular plasticity” in carbon nanotubes , 1998 .

[26]  P. Bernier,et al.  Elastic Properties of C and B x C y N z Composite Nanotubes , 1998 .

[27]  M. Nardelli,et al.  MECHANISM OF STRAIN RELEASE IN CARBON NANOTUBES , 1998 .

[28]  Richard Martel,et al.  Manipulation of Individual Carbon Nanotubes and Their Interaction with Surfaces , 1998 .

[29]  Alex Zettl,et al.  Measurement of the Elastic Modulus of a Multi-Wall Boron Nitride Nanotube , 1998 .

[30]  Steven G. Louie,et al.  Broken symmetry and pseudogaps in ropes of carbon nanotubes , 1998, Nature.

[31]  R. Superfine,et al.  Bending and buckling of carbon nanotubes under large strain , 1997, Nature.

[32]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[33]  Boris I. Yakobson,et al.  High strain rate fracture and C-chain unraveling in carbon nanotubes , 1997 .

[34]  Jian Ping Lu Elastic Properties of Carbon Nanotubes and Nanoropes , 1997 .

[35]  Luc T. Wille,et al.  Elastic properties of single-walled carbon nanotubes in compression , 1997 .

[36]  C. Kane,et al.  Size, Shape, and Low Energy Electronic Structure of Carbon Nanotubes , 1996, cond-mat/9608146.

[37]  H. Dai,et al.  Fullerene 'crop circles' , 1997, Nature.

[38]  C. Brabec,et al.  Structural mechanics of carbon nanotubes: From continuum elasticity to atomistic fracture , 1996 .

[39]  P. Ajayan,et al.  Carbon onions as nanoscopic pressure cells for diamond formation , 1996, Nature.

[40]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[41]  M. Terrones,et al.  The Role Of Defects In Graphitic Structures , 1996 .

[42]  Charlier,et al.  Structural and electronic properties of pentagon-heptagon pair defects in carbon nanotubes. , 1996, Physical review. B, Condensed matter.

[43]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[44]  Benedict,et al.  Pure carbon nanoscale devices: Nanotube heterojunctions. , 1996, Physical review letters.

[45]  A. Maiti,et al.  Structural flexibility of carbon nanotubes , 1996 .

[46]  H. Dai,et al.  Nanotubes as nanoprobes in scanning probe microscopy , 1996, Nature.

[47]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[48]  L. B. Ebert Science of fullerenes and carbon nanotubes , 1996 .

[49]  W. DeGrado,et al.  Protein Design: A Hierarchic Approach , 1995, Science.

[50]  P. Nordlander,et al.  Unraveling Nanotubes: Field Emission from an Atomic Wire , 1995, Science.

[51]  Steven G. Louie,et al.  Fully collapsed carbon nanotubes , 1995, Nature.

[52]  T. Ebbesen,et al.  Graphene in 3‐dimensions: Towards graphite origami , 1995 .

[53]  Bobby G. Sumpter,et al.  The onset of instability in nanostructures: The role of nonlinear resonance , 1995 .

[54]  Satish Kumar,et al.  Compressive behavior of materials: Part II. High performance fibers , 1995 .

[55]  K. Lafdi,et al.  Flexibility of graphene layers in carbon nanotubes , 1995 .

[56]  Miyamoto,et al.  Electronic properties of tubule forms of hexagonal BC3. , 1994, Physical review. B, Condensed matter.

[57]  S. Louie,et al.  Stability and Band Gap Constancy of Boron Nitride Nanotubes , 1994 .

[58]  Miyamoto,et al.  Chiral tubules of hexagonal BC2N. , 1994, Physical review. B, Condensed matter.

[59]  R. Ruoff,et al.  Structural properties of a carbon-nanotube crystal. , 1994, Physical review letters.

[60]  Cohen,et al.  Theory of graphitic boron nitride nanotubes. , 1994, Physical review. B, Condensed matter.

[61]  T. Ebbesen,et al.  Role of sp3 defect structures in graphite and carbon nanotubes , 1994, Nature.

[62]  R C Haddon,et al.  Chemistry of the Fullerenes: The Manifestation of Strain in a Class of Continuous Aromatic Molecules , 1993, Science.

[63]  Rodney S. Ruoff,et al.  Radial deformation of carbon nanotubes by van der Waals forces , 1993, Nature.

[64]  David Tománek,et al.  Structural rigidity and low frequency vibrational modes of long carbon tubules , 1993 .

[65]  Kazutoshi Tanabe,et al.  Computer-aided materials design. , 1993 .

[66]  David Alan Drabold,et al.  Energetics of Large Fullerenes: Balls, Tubes, and Capsules , 1992, Science.

[67]  Robertson,et al.  Energetics of nanoscale graphitic tubules. , 1992, Physical review. B, Condensed matter.

[68]  Robert L. Whetten,et al.  Resilience of all-carbon molecules C60, C70, and C84: A surface-scattering time-of-flight investigation , 1991 .

[69]  M. Ashby Overview No. 80: On the engineering properties of materials , 1989 .

[70]  Kenneth S. Suslick,et al.  Ultrasound: Its Chemical, Physical, and Biological Effects , 1988 .

[71]  M. Dresselhaus,et al.  Graphite fibers and filaments , 1988 .

[72]  B. T. Kelly,et al.  Physics of Graphite , 1981 .

[73]  J. H. Martin,et al.  Buckle propagation in submarine pipelines , 1975, Nature.

[74]  Jens Lothe John Price Hirth,et al.  Theory of Dislocations , 1968 .