The excess of a hadamard matrix

Let σ(n) be the greatest possible sum of the entries of a Hadamard matrix of order n. We derive n22−n(n12n) ⩽ σ(n) ⩽ nvn, which implies nv(n2) ⩽ σ(n) ⩽ nvn. Besides, σ(n) is evaluated for n ⩽ 24 and several other values of n.

[1]  Haim Hanani,et al.  Balanced incomplete block designs and related designs , 1975, Discret. Math..

[2]  Edward T. H. Wang,et al.  The Weights of Hadamard Matrices , 1977, J. Comb. Theory, Ser. A.

[3]  M. Hall Hadamard matrices of order 20 , 1965 .