The excess of a hadamard matrix
暂无分享,去创建一个
Let σ(n) be the greatest possible sum of the entries of a Hadamard matrix of order n. We derive
n22−n(n12n) ⩽ σ(n) ⩽ nvn,
which implies
nv(n2) ⩽ σ(n) ⩽ nvn.
Besides, σ(n) is evaluated for n ⩽ 24 and several other values of n.
[1] Haim Hanani,et al. Balanced incomplete block designs and related designs , 1975, Discret. Math..
[2] Edward T. H. Wang,et al. The Weights of Hadamard Matrices , 1977, J. Comb. Theory, Ser. A.
[3] M. Hall. Hadamard matrices of order 20 , 1965 .