On graphs and codes preserved by edge local complementation
暂无分享,去创建一个
Matthew G. Parker | Constanza Riera | Lars Eirik Danielsen | Joakim Grahl Knudsen | M. Parker | Constanza Riera
[1] J. Eisert,et al. Multiparty entanglement in graph states , 2003, quant-ph/0307130.
[2] Matthew G. Parker,et al. Edge local complementation and equivalence of binary linear codes , 2008, Des. Codes Cryptogr..
[3] Matthew G. Parker,et al. On Iterative Decoding of HDPC Codes Using Weight-Bounding Graph Operations , 2010 .
[4] Robert T. Curtis,et al. On graphs and codes , 1992 .
[5] Matthew G. Parker,et al. Generalized Bent Criteria for Boolean Functions (I) , 2005, IEEE Transactions on Information Theory.
[6] Matthew G. Parker,et al. Iterative decoding on multiple tanner graphs using random edge local complementation , 2009, 2009 IEEE International Symposium on Information Theory.
[7] Vincent Rijmen,et al. The Quantum Entanglement of Binary and Bipolar Sequences , 2001, SETA.
[8] James F. Geelen,et al. Circle graph obstructions under pivoting , 2009, J. Graph Theory.
[9] Matthew G. Parker,et al. Interlace polynomials: Enumeration, unimodality and connections to codes , 2008, Discret. Appl. Math..
[10] Matthew G. Parker,et al. Improved adaptive belief propagation decoding using edge-local complementation , 2010, 2010 IEEE International Symposium on Information Theory.
[11] André Bouchet,et al. Graphic presentations of isotropic systems , 1987, J. Comb. Theory, Ser. B.
[12] N. J. A. Sloane,et al. Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.
[13] Matthew G. Parker,et al. On Pivot Orbits of Boolean Functions , 2006, math/0604396.
[14] Hubert de Fraysseix,et al. Local complementation and interlacement graphs , 1981, Discret. Math..
[15] Matthew G. Parker,et al. Random Edge-Local Complementation With Applications to Iterative Decoding of HDPC Codes , 2010 .
[16] H. Briegel,et al. Measurement-based quantum computation , 2009, 0910.1116.
[17] G. H. John van Rees,et al. An Enumeration of Binary Self-Dual Codes of Length 32 , 2002, Des. Codes Cryptogr..
[18] R. Brualdi,et al. Handbook Of Coding Theory , 2011 .
[19] David L. Feder,et al. Edge local complementation for logical cluster states , 2011 .
[20] Joanna A. Ellis-Monaghan,et al. Distance Hereditary Graphs and the Interlace Polynomial , 2006, Combinatorics, Probability and Computing.
[21] R. T. Bilous,et al. Enumeration of the Binary Self-Dual Codes of Length 34 , 2004 .
[22] Béla Bollobás,et al. The interlace polynomial of a graph , 2004, J. Comb. Theory, Ser. B.
[23] Béla Bollobás,et al. Modern Graph Theory , 2002, Graduate Texts in Mathematics.
[24] Bart De Moor,et al. Graphical description of the action of local Clifford transformations on graph states , 2003, quant-ph/0308151.
[25] Keith M. Chugg,et al. Transactions Letters - Random Redundant Iterative Soft-in Soft-out Decoding , 2008, IEEE Transactions on Communications.
[26] Matthew G. Parker,et al. On the classification of all self-dual additive codes over GF(4) of length up to 12 , 2005, J. Comb. Theory, Ser. A.
[27] André Bouchet,et al. Circle Graph Obstructions , 1994, J. Comb. Theory, Ser. B.
[28] Lorenzo Traldi,et al. On the interlace polynomials , 2010, J. Comb. Theory, Ser. B.
[29] Béla Bollobás,et al. Euler circuits and DNA sequencing by hybridization , 2000, Discret. Appl. Math..
[30] Matthew G. Parker,et al. Adaptive Soft-Decision Iterative Decoding Using Edge Local Complementation , 2008, ICMCTA.