On graphs and codes preserved by edge local complementation

Orbits of graphs under local complementation (LC) and edge local complementation (ELC) have been studied in several different contexts. For instance, there are connections between orbits of graphs and error-correcting codes. We define a new graph class, ELC-preserved graphs, comprising all graphs that have an ELC orbit of size one. Through an exhaustive search, we find all ELC-preserved graphs of order up to 12 and all ELC-preserved bipartite graphs of order up to 16. We provide general recursive constructions for infinite families of ELC-preserved graphs, and show that all known ELC-preserved graphs arise from these constructions or can be obtained from Hamming codes. We also prove that certain pairs of ELC-preserved graphs are LC equivalent. We define ELC-preserved codes as binary linear codes corresponding to bipartite ELC-preserved graphs, and study the parameters of such codes.

[1]  J. Eisert,et al.  Multiparty entanglement in graph states , 2003, quant-ph/0307130.

[2]  Matthew G. Parker,et al.  Edge local complementation and equivalence of binary linear codes , 2008, Des. Codes Cryptogr..

[3]  Matthew G. Parker,et al.  On Iterative Decoding of HDPC Codes Using Weight-Bounding Graph Operations , 2010 .

[4]  Robert T. Curtis,et al.  On graphs and codes , 1992 .

[5]  Matthew G. Parker,et al.  Generalized Bent Criteria for Boolean Functions (I) , 2005, IEEE Transactions on Information Theory.

[6]  Matthew G. Parker,et al.  Iterative decoding on multiple tanner graphs using random edge local complementation , 2009, 2009 IEEE International Symposium on Information Theory.

[7]  Vincent Rijmen,et al.  The Quantum Entanglement of Binary and Bipolar Sequences , 2001, SETA.

[8]  James F. Geelen,et al.  Circle graph obstructions under pivoting , 2009, J. Graph Theory.

[9]  Matthew G. Parker,et al.  Interlace polynomials: Enumeration, unimodality and connections to codes , 2008, Discret. Appl. Math..

[10]  Matthew G. Parker,et al.  Improved adaptive belief propagation decoding using edge-local complementation , 2010, 2010 IEEE International Symposium on Information Theory.

[11]  André Bouchet,et al.  Graphic presentations of isotropic systems , 1987, J. Comb. Theory, Ser. B.

[12]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[13]  Matthew G. Parker,et al.  On Pivot Orbits of Boolean Functions , 2006, math/0604396.

[14]  Hubert de Fraysseix,et al.  Local complementation and interlacement graphs , 1981, Discret. Math..

[15]  Matthew G. Parker,et al.  Random Edge-Local Complementation With Applications to Iterative Decoding of HDPC Codes , 2010 .

[16]  H. Briegel,et al.  Measurement-based quantum computation , 2009, 0910.1116.

[17]  G. H. John van Rees,et al.  An Enumeration of Binary Self-Dual Codes of Length 32 , 2002, Des. Codes Cryptogr..

[18]  R. Brualdi,et al.  Handbook Of Coding Theory , 2011 .

[19]  David L. Feder,et al.  Edge local complementation for logical cluster states , 2011 .

[20]  Joanna A. Ellis-Monaghan,et al.  Distance Hereditary Graphs and the Interlace Polynomial , 2006, Combinatorics, Probability and Computing.

[21]  R. T. Bilous,et al.  Enumeration of the Binary Self-Dual Codes of Length 34 , 2004 .

[22]  Béla Bollobás,et al.  The interlace polynomial of a graph , 2004, J. Comb. Theory, Ser. B.

[23]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.

[24]  Bart De Moor,et al.  Graphical description of the action of local Clifford transformations on graph states , 2003, quant-ph/0308151.

[25]  Keith M. Chugg,et al.  Transactions Letters - Random Redundant Iterative Soft-in Soft-out Decoding , 2008, IEEE Transactions on Communications.

[26]  Matthew G. Parker,et al.  On the classification of all self-dual additive codes over GF(4) of length up to 12 , 2005, J. Comb. Theory, Ser. A.

[27]  André Bouchet,et al.  Circle Graph Obstructions , 1994, J. Comb. Theory, Ser. B.

[28]  Lorenzo Traldi,et al.  On the interlace polynomials , 2010, J. Comb. Theory, Ser. B.

[29]  Béla Bollobás,et al.  Euler circuits and DNA sequencing by hybridization , 2000, Discret. Appl. Math..

[30]  Matthew G. Parker,et al.  Adaptive Soft-Decision Iterative Decoding Using Edge Local Complementation , 2008, ICMCTA.