Stereoselectivity of an ω-transaminase-mediated amination of 1,3-dihydroxy-1-phenylpropane-2-one

[1]  Wolfgang Kroutil,et al.  Asymmetric Synthesis of Optically Pure Pharmacologically Relevant Amines Employing ω‐Transaminases , 2008 .

[2]  Mark E. B. Smith,et al.  Enhancing and Reversing the Stereoselectivity of Escherichia coli Transketolase via Single-Point Mutations , 2008 .

[3]  Tarik Senussi,et al.  Directed evolution of transketolase substrate specificity towards an aliphatic aldehyde. , 2008, Journal of biotechnology.

[4]  Karen Robins,et al.  Efficient Asymmetric Synthesis of Chiral Amines by Combining Transaminase and Pyruvate Decarboxylase , 2008, Chembiochem : a European journal of chemical biology.

[5]  Mark E. B. Smith,et al.  Substrate spectrum of ω-transaminase from Chromobacterium violaceum DSM30191 and its potential for biocatalysis , 2007 .

[6]  John D. Hayler,et al.  Key green chemistry research areas—a perspective from pharmaceutical manufacturers , 2007 .

[7]  Helen C. Hailes,et al.  One‐pot synthesis of amino‐alcohols using a de‐novo transketolase and β‐alanine: Pyruvate transaminase pathway in Escherichia coli , 2007 .

[8]  S. Hajra,et al.  Stereoselective syntheses of (−)-chloramphenicol and (+)-thiamphenicol , 2006 .

[9]  P. Dalby,et al.  The First Mimetic of the Transketolase Reaction , 2006 .

[10]  N. Barua,et al.  A short asymmetric total synthesis of chloramphenicol using a selectively protected 1,2-diol , 2005 .

[11]  Ling-Ling Wei,et al.  A Soluble Block Copolymer-Supported bis-Cinchona Alkaloid Ligand for the Asymmetric Dihydroxylation of Olefins , 2003 .

[12]  Yusuf A. Hannun,et al.  The Ceramide-centric Universe of Lipid-mediated Cell Regulation: Stress Encounters of the Lipid Kind* , 2002, The Journal of Biological Chemistry.

[13]  J. Shin,et al.  Exploring the active site of amine:pyruvate aminotransferase on the basis of the substrate structure-reactivity relationship: how the enzyme controls substrate specificity and stereoselectivity. , 2002, The Journal of organic chemistry.

[14]  Tsuyoshi Nakamura,et al.  Stereoselective synthesis of d-erythro-sphingosine and l-lyxo-phytosphingosine , 2001 .

[15]  Rainer Heck,et al.  Crossed Acyloin Condensation of Aliphatic Aldehydes , 2001 .

[16]  J. Shin,et al.  Comparison of the ω-Transaminases from Different Microorganisms and Application to Production of Chiral Amines , 2001, Bioscience, biotechnology, and biochemistry.

[17]  Byung Gee Kim,et al.  Asymmetric synthesis of chiral amines with ω‐transaminase , 1999 .

[18]  Stefan Bräse,et al.  Total Synthesis of Vancomycin—Part 2: Retrosynthetic Analysis, Synthesis of Amino Acid Building Blocks and Strategy Evaluations , 1999 .

[19]  M. Rozwadowska Reaction of (1S,2S)-2-amino-1-phenyl-1,3-propanediol with thioacids under the Mitsunobu reaction condition , 1997 .

[20]  R. Grubbs,et al.  Safe and Convenient Procedure for Solvent Purification , 1996 .

[21]  F. Effenberger,et al.  Stereoselective synthesis of (1R,2S)-2-amino-1,3-diols from (R)-cyanohydrins , 1995 .

[22]  Jens Hartung,et al.  The Osmium-Catalyzed Asymmetric Dihydroxylation: A New Ligand Class and a Process Improvement , 1992 .

[23]  R. Stenger,et al.  New Antibacterial Agents. 2-Acylamino-1-(4-hydrocarbonylsulfonylphenyl)-1,3-propanediols and Related Compounds , 1952 .

[24]  A. Rudge,et al.  Deoxynojirimycin: synthesis and biological activity. , 1994, Natural product reports.