On the commutant of $B(H)$ in its ultrapower
暂无分享,去创建一个
[1] Ilijas Farah,et al. Model theory of operator algebras I: stability , 2009, 0908.2790.
[2] E. Kirchberg,et al. Embedding of exact C^*-algebras in the Cuntz algebra *_2 , 2000 .
[3] Edward L. Wimmers,et al. The shelahP-point independence theorem , 1982 .
[4] Divisible operators in von Neumann algebras , 2006, math/0611364.
[5] N. Christopher Phillips. A Classification Theorem for Nuclear Purely Infinite Simple C -Algebras 1 , 1995 .
[6] I. Farah,et al. The commutant of L(H) in its ultrapower may or may not be trivial , 2008, 0808.3763.
[7] David Booth,et al. Ultrafilters on a countable set , 1970 .
[8] S. Shelah. Proper Forcing , 2001 .
[9] The relative commutant of separable C∗-algebras of real rank zero , 2008, 0809.2843.
[10] W. Rudin. Homogeneity Problems in the Theory of Čech Compactifications , 1956 .
[11] Mary Ellen Rudin,et al. Partial orders on the types in , 1971 .
[12] M. Izumi. Finite group actions on C*-algebras with the Rohlin property, I , 2004 .
[13] I. Farah. ALL AUTOMORPHISMS OF THE CALKIN ALGEBRA ARE INNER , 2007, 0705.3085.
[14] B. Ollier,et al. Happy families , 1997, Annals of the rheumatic diseases.
[15] Andreas Blass,et al. The Next Best Thing to a P-Point , 2015, J. Symb. Log..