Long-range movement of large mechanically interlocked DNA nanostructures

Interlocked molecules such as catenanes and rotaxanes, connected only via mechanical bonds have the ability to perform large-scale sliding and rotational movements, making them attractive components for the construction of artificial molecular machines and motors. We here demonstrate the realization of large, rigid rotaxane structures composed of DNA origami subunits. The structures can be easily modified to carry a molecular cargo or nanoparticles. By using multiple axle modules, rotaxane constructs are realized with axle lengths of up to 355 nm and a fuel/anti-fuel mechanism is employed to switch the rotaxanes between a mobile and a fixed state. We also create extended pseudo-rotaxanes, in which origami rings can slide along supramolecular DNA filaments over several hundreds of nanometres. The rings can be actively moved and tracked using atomic force microscopy.

[1]  N. Seeman,et al.  Assembly of Borromean rings from DNA , 1997, Nature.

[2]  Nadrian C. Seeman,et al.  A synthetic DNA molecule in three knotted topologies , 1995 .

[3]  Hai-Jun Su,et al.  Programmable motion of DNA origami mechanisms , 2015, Proceedings of the National Academy of Sciences.

[4]  Michael Famulok,et al.  Reversible Light Switch for Macrocycle Mobility in a DNA Rotaxane , 2012, Journal of the American Chemical Society.

[5]  Ruchuan Liu,et al.  Bipedal nanowalker by pure physical mechanisms. , 2012, Physical review letters.

[6]  A. Turberfield,et al.  Direct observation of stepwise movement of a synthetic molecular transporter. , 2011, Nature nanotechnology.

[7]  Itamar Willner,et al.  Au nanoparticle/DNA rotaxane hybrid nanostructures exhibiting switchable fluorescence properties. , 2013, Nano letters.

[8]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.

[9]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[10]  Hao Yan,et al.  Interconnecting gold islands with DNA origami nanotubes. , 2010, Nano letters.

[11]  Itamar Willner,et al.  Recent Advances in the Synthesis and Functions of Reconfigurable Interlocked DNA Nanostructures. , 2016, Journal of the American Chemical Society.

[12]  J. Kjems,et al.  Self-assembly of a nanoscale DNA box with a controllable lid , 2009, Nature.

[13]  Shawn M. Douglas,et al.  A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads , 2012, Science.

[14]  Hao Yan,et al.  Folding and cutting DNA into reconfigurable topological nanostructures. , 2010, Nature nanotechnology.

[15]  T. G. Martin,et al.  Facile and Scalable Preparation of Pure and Dense DNA Origami Solutions , 2014, Angewandte Chemie.

[16]  J. Fraser Stoddart,et al.  A Molecular Elevator , 2004, Science.

[17]  Yangyang Yang,et al.  Photo-controllable DNA origami nanostructures assembling into predesigned multiorientational patterns. , 2012, Journal of the American Chemical Society.

[18]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[19]  Hao Li,et al.  An artificial molecular pump. , 2015, Nature nanotechnology.

[20]  Hendrik Dietz,et al.  Efficient Production of Single-Stranded Phage DNA as Scaffolds for DNA Origami , 2015, Nano letters.

[21]  F. Jülicher,et al.  Modeling molecular motors , 1997 .

[22]  Xingguo Liang,et al.  A DNA Nanomachine Powered by Light Irradiation , 2008, Chembiochem : a European journal of chemical biology.

[23]  Michael Famulok,et al.  Design strategy for DNA rotaxanes with a mechanically reinforced PX100 axle. , 2012, Angewandte Chemie.

[24]  Erik Winfree,et al.  Molecular robots guided by prescriptive landscapes , 2010, Nature.

[25]  T. Klar,et al.  Gold nanostoves for microsecond DNA melting analysis. , 2008, Nano letters.

[26]  Friedrich C Simmel,et al.  Nucleic acid based molecular devices. , 2011, Angewandte Chemie.

[27]  Michael Famulok,et al.  Daisy Chain Rotaxanes Made from Interlocked DNA Nanostructures , 2016, Angewandte Chemie.

[28]  N. Seeman,et al.  A Proximity-Based Programmable DNA Nanoscale Assembly Line , 2010, Nature.

[29]  Michael Famulok,et al.  A double-stranded DNA rotaxane. , 2010, Nature nanotechnology.

[30]  Bernard Yurke,et al.  Using DNA to Power Nanostructures , 2003, Genetic Programming and Evolvable Machines.

[31]  David J. Williams,et al.  A [2] Catenane Made to Order , 1989 .

[32]  J. F. Stoddart,et al.  Interlocked and Intertwined Structures and Superstructures , 1996 .

[33]  Bonnie A. Sheriff,et al.  A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre , 2007, Nature.

[34]  Weihong Tan,et al.  Single-DNA molecule nanomotor regulated by photons. , 2009, Nano letters.

[35]  A. Kuzyk,et al.  Reconfigurable 3D plasmonic metamolecules. , 2014, Nature materials.

[36]  J. W. Ward,et al.  Sequence-Specific Peptide Synthesis by an Artificial Small-Molecule Machine , 2013, Science.

[37]  I. Willner,et al.  Switchable reconfiguration of an interlocked DNA olympiadane nanostructure. , 2014, Angewandte Chemie.

[38]  F. Simmel,et al.  DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response , 2011, Nature.

[39]  Ruojie Sha,et al.  A Bipedal DNA Brownian Motor with Coordinated Legs , 2009, Science.

[40]  Shawn M. Douglas,et al.  Folding DNA into Twisted and Curved Nanoscale Shapes , 2009, Science.

[41]  A. Turberfield,et al.  Coordinated chemomechanical cycles: a mechanism for autonomous molecular motion. , 2008, Physical review letters.

[42]  F. Simmel,et al.  Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. , 2010, Nano letters.

[43]  Itamar Willner,et al.  Powering the programmed nanostructure and function of gold nanoparticles with catenated DNA machines , 2013, Nature Communications.

[44]  David R. Liu,et al.  Autonomous Multistep Organic Synthesis in a Single Isothermal Solution Mediated by a DNA Walker , 2010, Nature nanotechnology.