The rotating rigid body model based on a non-twisting frame

This work proposes and investigates a new model of the rotating rigid body based on the non-twisting frame. Such a frame consists of three mutually orthogonal unit vectors whose rotation rate around one of the three axis remains zero at all times and thus, is represented by a nonholonomic restriction. Then, the corresponding Lagrange-D'Alembert equations are formulated by employing two descriptions, the first one relying on rotations and a splitting approach, and the second one relying on constrained directors. For vanishing external moments, we prove that the new model possesses conservation laws, i.e., the kinetic energy and two nonholonomic momenta that substantially differ from the holonomic momenta preserved by the standard rigid body model. Additionally, we propose a new specialization of a class of energy-momentum integration schemes that exactly preserves the kinetic energy and the nonholonomic momenta replicating the continuous counterpart. Finally, we present numerical results that show the excellent conservation properties as well as the accuracy for the time-discretized governing equations.

[1]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model , 1990 .

[2]  Jerrold E. Marsden,et al.  The Hamiltonian structure of nonlinear elasticity: The material and convective representations of solids, rods, and plates , 1988 .

[3]  C. G. Gebhardt,et al.  Variational principles for nonlinear Kirchhoff rods , 2019, 1902.05726.

[4]  Joel Langer,et al.  Lagrangian Aspects of the Kirchhoff Elastic Rod , 1996, SIAM Rev..

[5]  J. Hearst,et al.  The Kirchhoff elastic rod, the nonlinear Schrödinger equation, and DNA supercoiling , 1994 .

[6]  C. G. Gebhardt,et al.  Understanding the nonlinear dynamics of beam structures: A principal geodesic analysis approach , 2019, Thin-Walled Structures.

[7]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[8]  Joris Vankerschaver,et al.  Geometric aspects of nonholonomic field theories , 2005, math-ph/0506010.

[9]  B. Audoly,et al.  Elastic knots. , 2007, Physical review letters.

[10]  Rida T. Farouki,et al.  Rational rotation-minimizing frames - Recent advances and open problems , 2016, Appl. Math. Comput..

[11]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[12]  P. Betsch,et al.  Frame‐indifferent beam finite elements based upon the geometrically exact beam theory , 2002 .

[13]  J. C. Simo,et al.  The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics , 1992 .

[14]  Carlo Sansour,et al.  The Cosserat surface as a shell model, theory and finite-element formulation , 1995 .

[15]  J. W. Humberston Classical mechanics , 1980, Nature.

[16]  M. Eisenberg,et al.  A Proof of the Hairy Ball Theorem , 1979 .

[17]  Martin Arnold,et al.  Computing with Rotations: Algorithms and Applications , 2017 .

[18]  J. Marsden,et al.  Variational integrators for constrained dynamical systems , 2008 .

[19]  Philip Holmes,et al.  Spatially complex equilibria of buckled rods , 1988 .

[20]  Ignacio Romero,et al.  An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energy–momentum conserving scheme in dynamics , 2002 .

[21]  L. Einkemmer Structure preserving numerical methods for the Vlasov equation , 2016, 1604.02616.

[22]  Alain Goriely,et al.  Tendril Perversion in Intrinsically Curved Rods , 2002, J. Nonlinear Sci..

[23]  Elena Celledoni,et al.  Energy-Preserving Integrators Applied to Nonholonomic Systems , 2016, J. Nonlinear Sci..

[24]  Raimund Rolfes,et al.  Nonlinear dynamics of slender structures: a new object-oriented framework , 2018, Computational Mechanics.

[25]  R. Bishop There is More than One Way to Frame a Curve , 1975 .

[26]  C. SimoJ.,et al.  The discrete energy-momentum method , 1992 .

[27]  Taeyoung,et al.  Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds , 2017 .

[28]  Gabriele Steidl,et al.  Priors with Coupled First and Second Order Differences for Manifold-Valued Image Processing , 2017, Journal of Mathematical Imaging and Vision.

[29]  Jorge Cortes,et al.  Non-holonomic integrators , 2001 .

[30]  Taeyoung Lee,et al.  Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nme.2603 Lagrangian mechanics and variational integrators on two-spheres , 2022 .

[31]  David Martín de Diego,et al.  Geometric Numerical Integration of Nonholonomic Systems and Optimal Control Problems , 2004, Eur. J. Control.

[32]  David Martín de Diego,et al.  On the geometry of non‐holonomic Lagrangian systems , 1996 .

[33]  P. Krishnaprasad,et al.  Nonholonomic mechanical systems with symmetry , 1996 .

[34]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[35]  André Uschmajew,et al.  A Riemannian Gradient Sampling Algorithm for Nonsmooth Optimization on Manifolds , 2017, SIAM J. Optim..

[36]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[37]  D. Allen-Booth,et al.  Classical Mechanics 2nd edn , 1974 .

[38]  G. G. Giusteri,et al.  Importance and Effectiveness of Representing the Shapes of Cosserat Rods and Framed Curves as Paths in the Special Euclidean Algebra , 2016, Journal of Elasticity.

[39]  Elena Celledoni,et al.  Preserving energy resp. dissipation in numerical PDEs using the "Average Vector Field" method , 2012, J. Comput. Phys..

[40]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[41]  Ignacio Romero,et al.  Numerical integration of the stiff dynamics of geometrically exact shells: an energy‐dissipative momentum‐conserving scheme , 2002 .

[42]  Peter Betsch,et al.  Energy-consistent numerical integration of mechanical systems with mixed holonomic and nonholonomic constraints , 2006 .

[43]  Peter Betsch,et al.  The discrete null space method for the energy consistent integration of constrained mechanical systems. Part II: multibody dynamics , 2006 .

[44]  Peter Betsch,et al.  The discrete null space method for the energy-consistent integration of constrained mechanical systems. Part III: Flexible multibody dynamics , 2008 .

[45]  G. Quispel,et al.  Geometric integration using discrete gradients , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[46]  J. C. Simo,et al.  A three-dimensional finite-strain rod model. Part II: Computational aspects , 1986 .

[47]  Ignacio Romero,et al.  Formulation and performance of variational integrators for rotating bodies , 2008 .

[48]  E. Grinspun,et al.  Discrete elastic rods , 2008, SIGGRAPH 2008.

[49]  Raimund Rolfes,et al.  A new conservative/dissipative time integration scheme for nonlinear mechanical systems , 2019, Computational Mechanics.

[50]  S. Antman Nonlinear problems of elasticity , 1994 .

[51]  Gordan Jelenić,et al.  INTERPOLATION OF ROTATIONAL VARIABLES IN NONLINEAR DYNAMICS OF 3D BEAMS , 1998 .

[52]  Christian J. Cyron,et al.  A torsion-free non-linear beam model , 2014 .

[53]  Ignacio Romero,et al.  The interpolation of rotations and its application to finite element models of geometrically exact rods , 2004 .

[54]  J. C. Simo,et al.  On stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization , 1989 .

[55]  Heinz-Otto Kreiss,et al.  Introduction to Numerical Methods for Time Dependent Differential Equations , 2014 .

[56]  Rolling heavy ball over the sphere in real Rn3 space , 2019, Nonlinear Dynamics.

[57]  J. C. Simo,et al.  Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum , 1991 .

[58]  J. Koiller Reduction of some classical non-holonomic systems with symmetry , 1992 .

[59]  J. C. Simo,et al.  Conserving algorithms for the dynamics of Hamiltonian systems on lie groups , 1994 .

[60]  P. Betsch,et al.  Constrained dynamics of geometrically exact beams , 2003 .