Deconstructing p53 transcriptional networks in tumor suppression.

[1]  M. Scott,et al.  Full p53 transcriptional activation potential is dispensable for tumor suppression in diverse lineages , 2011, Proceedings of the National Academy of Sciences.

[2]  M. Mclaughlin,et al.  Distinct p53 Transcriptional Programs Dictate Acute DNA-Damage Responses and Tumor Suppression , 2011, Cell.

[3]  Hendrik G. Stunnenberg,et al.  Role of p53 Serine 46 in p53 Target Gene Regulation , 2011, PloS one.

[4]  Steffen Jung,et al.  CKIα ablation highlights a critical role for p53 in invasiveness control , 2011, Nature.

[5]  Sun-Mi Park,et al.  CD95 promotes tumour growth , 2011, Nature.

[6]  A. Fornace,et al.  Gadd45a functions as a promoter or suppressor of breast cancer dependent on the oncogenic stress. , 2010, Cancer research.

[7]  H. Clevers,et al.  p21 loss blocks senescence following Apc loss and provokes tumourigenesis in the renal but not the intestinal epithelium , 2010, EMBO molecular medicine.

[8]  H. Vogel,et al.  Loss of the p53/p63 Regulated Desmosomal Protein Perp Promotes Tumorigenesis , 2010, PLoS genetics.

[9]  L. Attardi,et al.  p53 at a glance , 2010, Journal of Cell Science.

[10]  J. Bourdon,et al.  The isoforms of the p53 protein. , 2010, Cold Spring Harbor perspectives in biology.

[11]  M. Suckow,et al.  Fas/CD95 Deficiency in ApcMin/+ Mice Increases Intestinal Tumor Burden , 2010, PloS one.

[12]  Varda Rotter,et al.  When mutants gain new powers: news from the mutant p53 field , 2009, Nature Reviews Cancer.

[13]  L. Donehower,et al.  Timed Somatic Deletion of p53 in Mice Reveals Age-Associated Differences in Tumor Progression , 2009, PloS one.

[14]  S. Benchimol,et al.  DNA damage- and stress-induced apoptosis occurs independently of PIDD , 2009, Apoptosis.

[15]  U. Moll,et al.  The mitochondrial p53 pathway. , 2009, Biochimica et biophysica acta.

[16]  C. Prives,et al.  Blinded by the Light: The Growing Complexity of p53 , 2009, Cell.

[17]  H. Jane Dyson,et al.  Cooperative regulation of p53 by modulation of ternary complex formation with CBP/p300 and HDM2 , 2009, Proceedings of the National Academy of Sciences.

[18]  Tsutomu Ohta,et al.  PH Domain-Only Protein PHLDA3 Is a p53-Regulated Repressor of Akt , 2009, Cell.

[19]  A. Strasser,et al.  Puma and to a lesser extent Noxa are suppressors of Myc-induced lymphomagenesis , 2009, Cell Death and Differentiation.

[20]  R. Kofler,et al.  Noxa: at the tip of the balance between life and death , 2008, Oncogene.

[21]  Mark A. Hall,et al.  Selection against PUMA Gene Expression in Myc-Driven B-Cell Lymphomagenesis , 2008, Molecular and Cellular Biology.

[22]  Jian Yu,et al.  PUMA regulates intestinal progenitor cell radiosensitivity and gastrointestinal syndrome. , 2008, Cell stem cell.

[23]  Eduardo Sontag,et al.  Transcriptional control of human p53-regulated genes , 2008, Nature Reviews Molecular Cell Biology.

[24]  Jiri Bartek,et al.  An Oncogene-Induced DNA Damage Model for Cancer Development , 2008, Science.

[25]  A. Strasser,et al.  In several cell types tumour suppressor p53 induces apoptosis largely via Puma but Noxa can contribute , 2008, Cell Death and Differentiation.

[26]  A. Klein-Szanto,et al.  TRAIL-R deficiency in mice promotes susceptibility to chronic inflammation and tumorigenesis. , 2008, The Journal of clinical investigation.

[27]  A. Multani,et al.  Telomere dysfunction suppresses spontaneous tumorigenesis in vivo by initiating p53‐dependent cellular senescence , 2007, EMBO reports.

[28]  A. Fersht,et al.  Four domains of p300 each bind tightly to a sequence spanning both transactivation subdomains of p53 , 2007, Proceedings of the National Academy of Sciences.

[29]  M. Serrano,et al.  A new mouse model to explore the initiation, progression, and therapy of BRAFV600E-induced lung tumors. , 2007, Genes & development.

[30]  A. Strasser,et al.  Ultraviolet radiation triggers apoptosis of fibroblasts and skin keratinocytes mainly via the BH3-only protein Noxa , 2007, The Journal of cell biology.

[31]  T. Jacks,et al.  Restoration of p53 function leads to tumour regression in vivo , 2007, Nature.

[32]  Z. Ju,et al.  p21 delays tumor onset by preservation of chromosomal stability , 2006, Proceedings of the National Academy of Sciences.

[33]  G. Evan,et al.  The pathological response to DNA damage does not contribute to p53-mediated tumour suppression , 2006, Nature.

[34]  A. Efeyan,et al.  Tumour biology: Policing of oncogene activity by p53 , 2006, Nature.

[35]  Barbara Hoffman,et al.  Gadd45a suppresses Ras-driven mammary tumorigenesis by activation of c-Jun NH2-terminal kinase and p38 stress signaling resulting in apoptosis and senescence. , 2006, Cancer research.

[36]  A. Strasser,et al.  BH3-Only Proapoptotic Bcl-2 Family Members Noxa and Puma Mediate Neural Precursor Cell Death , 2006, The Journal of Neuroscience.

[37]  Toshiaki Hara,et al.  Structure of the Tfb1/p53 complex: Insights into the interaction between the p62/Tfb1 subunit of TFIIH and the activation domain of p53. , 2006, Molecular cell.

[38]  G. Evan,et al.  Specific Requirement for Bax, Not Bak, in Myc-induced Apoptosis and Tumor Suppression in Vivo* , 2006, Journal of Biological Chemistry.

[39]  P. Pelicci,et al.  G1 checkpoint failure and increased tumor susceptibility in mice lacking the novel p53 target Ptprv , 2005, The EMBO journal.

[40]  L. Donehower,et al.  Probing p53 biological functions through the use of genetically engineered mouse models. , 2005, Mutation research.

[41]  Jason A. Koutcher,et al.  Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis , 2005, Nature.

[42]  Rebecca A. Ihrie,et al.  Perp Is a p63-Regulated Gene Essential for Epithelial Integrity , 2005, Cell.

[43]  S. Lowe,et al.  DR5 Knockout Mice Are Compromised in Radiation-Induced Apoptosis , 2005, Molecular and Cellular Biology.

[44]  A. Giaccia,et al.  The p53QS transactivation-deficient mutant shows stress-specific apoptotic activity and induces embryonic lethality , 2005, Nature Genetics.

[45]  Jiri Bartek,et al.  Cell-cycle checkpoints and cancer , 2004, Nature.

[46]  S. Lowe,et al.  Suppression of tumorigenesis by the p53 target PUMA. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[47]  P. Pandolfi,et al.  PML is a direct p53 target that modulates p53 effector functions. , 2004, Molecular cell.

[48]  K. Mohammad,et al.  Modulation of mammalian life span by the short isoform of p53. , 2004, Genes & development.

[49]  A. Multani,et al.  Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice , 2004, Nature Genetics.

[50]  Rebecca A. Ihrie,et al.  Perp Is a Mediator of p53-Dependent Apoptosis in Diverse Cell Types , 2003, Current Biology.

[51]  Andreas Villunger,et al.  p53- and Drug-Induced Apoptotic Responses Mediated by BH3-Only Proteins Puma and Noxa , 2003, Science.

[52]  J. Cleveland,et al.  Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. , 2003, Cancer cell.

[53]  S. Akira,et al.  Integral role of Noxa in p53-mediated apoptotic response. , 2003, Genes & development.

[54]  D. Coppola,et al.  p21Cip1 nullizygosity increases tumor metastasis in irradiated mice. , 2003, Cancer research.

[55]  A. Fornace,et al.  Loss of Oncogenic H-ras-Induced Cell Cycle Arrest and p38 Mitogen-Activated Protein Kinase Activation by Disruption of Gadd45a , 2003, Molecular and Cellular Biology.

[56]  Albert J Fornace,et al.  Gadd45a protects against UV irradiation-induced skin tumors, and promotes apoptosis and stress signaling via MAPK and p53. , 2002, Cancer research.

[57]  S. Lowe,et al.  Dissecting p53 tumor suppressor functions in vivo. , 2002, Cancer cell.

[58]  S. Korsmeyer,et al.  Bax Loss Impairs Myc-Induced Apoptosis and Circumvents the Selection of p53 Mutations during Myc-Mediated Lymphomagenesis , 2001, Molecular and Cellular Biology.

[59]  M. Serrano,et al.  Tumor susceptibility of p21(Waf1/Cip1)-deficient mice. , 2001, Cancer research.

[60]  K. Vousden,et al.  PUMA, a novel proapoptotic gene, is induced by p53. , 2001, Molecular cell.

[61]  K. Kinzler,et al.  PUMA induces the rapid apoptosis of colorectal cancer cells. , 2001, Molecular cell.

[62]  P. Pandolfi,et al.  Role of Promyelocytic Leukemia (Pml) Protein in Tumor Suppression , 2001, The Journal of experimental medicine.

[63]  S. Korsmeyer,et al.  Bax accelerates tumorigenesis in p53-deficient mice. , 2001, Cancer research.

[64]  S. Nicosia,et al.  Loss of p21WAF1/CIP1 accelerates Ras oncogenesis in a transgenic/knockout mammary cancer model , 2000, Oncogene.

[65]  G. Stein,et al.  Uncoupling between Phenotypic Senescence and Cell Cycle Arrest in Aging p21-Deficient Fibroblasts , 2000, Molecular and Cellular Biology.

[66]  P. Pearson,et al.  Atmospheric carbon dioxide concentrations over the past 60 million years , 2000, Nature.

[67]  S. Lowe,et al.  PML is induced by oncogenic ras and promotes premature senescence. , 2000, Genes & development.

[68]  Pier Paolo Pandolfi,et al.  PML regulates p53 acetylation and premature senescence induced by oncogenic Ras , 2000, Nature.

[69]  T. Taniguchi,et al.  Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. , 2000, Science.

[70]  S. Lowe,et al.  PERP, an apoptosis-associated target of p53, is a novel member of the PMP-22/gas3 family. , 2000, Genes & development.

[71]  A. Strasser,et al.  CD95 (Fas/APO-1) and p53 signal apoptosis independently in diverse cell types. , 2000, Cancer research.

[72]  S. Korsmeyer,et al.  Atm and Bax cooperate in ionizing radiation-induced apoptosis in the central nervous system. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[73]  S. Korsmeyer,et al.  Damage-induced apoptosis in intestinal epithelia from bcl-2-null and bax-null mice: investigations of the mechanistic determinants of epithelial apoptosis in vivo , 1999, Oncogene.

[74]  William F. Morgan,et al.  Genomic instability in Gadd45a-deficient mice , 1999, Nature Genetics.

[75]  M. Serrano,et al.  Murine fibroblasts lacking p21 undergo senescence and are resistant to transformation by oncogenic Ras , 1999, Oncogene.

[76]  C. Kemp,et al.  Tumor suppression by p27Kip1 and p21Cip1 during chemically induced skin carcinogenesis , 1999, Oncogene.

[77]  S. Korsmeyer,et al.  Haploid loss of bax leads to accelerated mammary tumor development in C3(1)/SV40‐TAg transgenic mice: reduction in protective apoptotic response at the preneoplastic stage , 1999, The EMBO journal.

[78]  E. Conseiller,et al.  Definition of a p53 transactivation function-deficient mutant and characterization of two independent p53 transactivation subdomains , 1999, Oncogene.

[79]  L. Donehower,et al.  Heterozygosity of p21WAF1/CIP1 enhances tumor cell proliferation and cyclin D1-associated kinase activity in a murine mammary cancer model. , 1999, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research.

[80]  Mark D. Johnson,et al.  Evidence for involvement of Bax and p53, but not caspases, in radiation‐induced cell death of cultured postnatal hippocampal neurons , 1998, Journal of neuroscience research.

[81]  Xinbin Chen,et al.  Identification of a Novel p53 Functional Domain That Is Necessary for Mediating Apoptosis* , 1998, The Journal of Biological Chemistry.

[82]  T. Jacks,et al.  p21 Is a Critical CDK2 Regulator Essential for Proliferation Control in Rb-deficient Cells , 1998, The Journal of cell biology.

[83]  P. Pandolfi,et al.  Role of PML in cell growth and the retinoic acid pathway. , 1998, Science.

[84]  P. Schwartzkroin,et al.  Bax Involvement in p53-Mediated Neuronal Cell Death , 1998, The Journal of Neuroscience.

[85]  S. Berger,et al.  Two tandem and independent sub-activation domains in the amino terminus of p53 require the adaptor complex for activity , 1997, Oncogene.

[86]  S. Korsmeyer,et al.  bax-deficiency promotes drug resistance and oncogenic transformation by attenuating p53-dependent apoptosis. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[87]  S. Korsmeyer,et al.  Bax suppresses tumorigenesis and stimulates apoptosis in vivo , 1997, Nature.

[88]  S. Lowe,et al.  Transcriptional activation by p53, but not induction of the p21 gene, is essential for oncogene‐mediated apoptosis. , 1996, The EMBO journal.

[89]  N. Yoshida,et al.  Enhanced and accelerated lymphoproliferation in Fas-null mice. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[90]  James Brugarolas,et al.  Radiation-induced cell cycle arrest compromised by p21 deficiency , 1995, Nature.

[91]  S. Korsmeyer,et al.  Bax-Deficient Mice with Lymphoid Hyperplasia and Male Germ Cell Death , 1995, Science.

[92]  Stephen J. Elledge,et al.  Mice Lacking p21 CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control , 1995, Cell.

[93]  R. Tjian,et al.  p53 transcriptional activation mediated by coactivators TAFII40 and TAFII60. , 1995, Science.

[94]  S. Lowe,et al.  p53-Dependent apoptosis suppresses tumor growth and progression in vivo , 1994, Cell.

[95]  J. Trent,et al.  WAF1, a potential mediator of p53 tumor suppression , 1993, Cell.

[96]  S. Elledge,et al.  The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases , 1993, Cell.