Investigation of localization effect in GaN-rich InGaN alloys and modified band-tail model

[1]  T. Wei,et al.  A model for thermal annealing on forming In—N clusters in InGaNP , 2012 .

[2]  Bin Liu,et al.  The temperature dependence of optical properties of InGaN alloys , 2012 .

[3]  S. O. Usov,et al.  Analysis of the local indium composition in ultrathin InGaN layers , 2007 .

[4]  A. Larsson,et al.  Optical properties of GaInNAs/GaAs quantum well structures , 2007 .

[5]  Y. S. Park,et al.  Dependence of carrier localization in InGaN/GaN multiple-quantum wells on well thickness , 2006 .

[6]  C. Caetano,et al.  Phase stability, chemical bonds, and gap bowing ofInxGa1−xNalloys: Comparison between cubic and wurtzite structures , 2006 .

[7]  H. Morkoç,et al.  Optical studies of carrier dynamics and non-equilibrium optical phonons in nitride-based wide bandgap semiconductors , 2005 .

[8]  L. C. Chen,et al.  Effects of interfacial layers in InGaN∕GaN quantum-well structures on their optical and nanostructural properties , 2005 .

[9]  A. Zukauskas,et al.  Photoluminescence temperature behavior and Monte Carlo simulation of exciton hopping in InGaN multiple quantum wells , 2005 .

[10]  T. Taliercio,et al.  Radiative and nonradiative recombination processes in InN films grown by metal organic chemical vapor deposition , 2005 .

[11]  Shih-Chun Lin,et al.  Carrier relaxation in InGaN/GaN quantum wells with nanometer-scale cluster structures , 2004 .

[12]  S. Chang,et al.  Studies of InGaN∕GaN multiquantum-well green-light-emitting diodes grown by metalorganic chemical vapor deposition , 2004 .

[13]  C. Hong,et al.  Structural and Optical Characteristics of InGaN/GaN Multi-Quantum Wells Grown on a- and c-Plane Sapphire Substrates , 2004 .

[14]  A. Bell,et al.  Exciton freeze-out and thermally activated relaxation at local potential fluctuations in thick AlxGa1−xN layers , 2004 .

[15]  Eugene E. Haller,et al.  Temperature dependence of the fundamental band gap of InN , 2003 .

[16]  S. Feng,et al.  Quantum-well-width dependencies of postgrowth thermal annealing effects of InGaN/GaN quantum wells , 2003 .

[17]  H. Liu,et al.  Temperature-dependent emission intensity and energy shift in InGaN/GaN multiple-quantum-well light-emitting diodes , 2003 .

[18]  F. Bechstedt,et al.  First-principles calculations of gap bowing in In x Ga 1 − x N and In x Al 1 − x N alloys: Relation to structural and thermodynamic properties , 2002 .

[19]  Q. Li,et al.  Thermal redistribution of localized excitons and its effect on the luminescence band in InGaN ternary alloys , 2001 .

[20]  M. Leroux,et al.  Luminescence and absorption in InGaN epitaxial layers and the van Roosbroeck–Shockley relation , 2000 .

[21]  Tao Wang,et al.  Effect of silicon doping on the optical and transport properties of InGaN/GaN multiple-quantum-well structures , 2000 .

[22]  Y. Arakawa,et al.  Atomic structure and phase stability of In x Ga 1 − x N random alloys calculated using a valence-force-field method , 1999 .

[23]  Zhe Chuan Feng,et al.  Optical properties of InxGa1−xN alloys grown by metalorganic chemical vapor deposition , 1998 .

[24]  Umesh K. Mishra,et al.  “S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells , 1998 .

[25]  Petr G. Eliseev,et al.  BLUE TEMPERATURE-INDUCED SHIFT AND BAND-TAIL EMISSION IN INGAN-BASED LIGHT SOURCES , 1997 .

[26]  Shuji Nakamura,et al.  Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm , 1997 .

[27]  Z. Feng,et al.  Optical transitions in InxGa1−xN alloys grown by metalorganic chemical vapor deposition , 1996 .

[28]  Guangde Chen,et al.  Time-resolved photoluminescence studies of InGaN epilayers , 1996 .

[29]  Gerald B. Stringfellow,et al.  Solid phase immiscibility in GaInN , 1996 .

[30]  W. Shan,et al.  Temperature dependence of interband transitions in GaN grown by metalorganic chemical vapor deposition , 1995 .

[31]  Hsiang-Szu Chang,et al.  Localized states in InxGa1−xN epitaxial film , 2009 .