Basis for ligand discrimination between ON and OFF state riboswitch conformations: the case of the SAM-I riboswitch.

Riboswitches are RNA elements that bind to effector ligands and control gene expression. Most consist of two domains. S-Adenosyl Methionine (SAM) binds the aptamer domain of the SAM-I riboswitch and induces conformational changes in the expression domain to form an intrinsic terminator (transcription OFF state). Without SAM the riboswitch forms the transcription ON state, allowing read-through transcription. The mechanistic link between the SAM/aptamer recognition event and subsequent secondary structure rearrangement by the riboswitch is unclear. We probed for those structural features of the Bacillus subtilis yitJ SAM-I riboswitch responsible for discrimination between the ON and OFF states by SAM. We designed SAM-I riboswitch RNA segments forming "hybrid" structures of the ON and OFF states. The choice of segment constrains the formation of a partial P1 helix, characteristic of the OFF state, together with a partial antiterminator (AT) helix, characteristic of the ON state. For most choices of P1 vs. AT helix lengths, SAM binds with micromolar affinity according to equilibrium dialysis. Mutational analysis and in-line probing confirm that the mode of SAM binding by hybrid structures is similar to that of the aptamer. Altogether, binding measurements and in-line probing are consistent with the hypothesis that when SAM is present, stacking interactions with the AT helix stabilize a partially formed P1 helix in the hybrids. Molecular modeling indicates that continuous stacking between the P1 and the AT helices is plausible with SAM bound. Our findings raise the possibility that conformational intermediates may play a role in ligand-induced aptamer folding.

[1]  M. Fedor,et al.  mRNA Secondary Structures Fold Sequentially But Exchange Rapidly In Vivo , 2010, PLoS biology.

[2]  T. Henkin,et al.  A tertiary structural element in S box leader RNAs is required for S‐adenosylmethionine‐directed transcription termination , 2005, Molecular microbiology.

[3]  Mijeong Kang,et al.  Structural Insights into riboswitch control of the biosynthesis of queuosine, a modified nucleotide found in the anticodon of tRNA. , 2009, Molecular cell.

[4]  R. Breaker,et al.  Engineering ligand-responsive gene-control elements: lessons learned from natural riboswitches , 2009, Gene Therapy.

[5]  T. Henkin,et al.  Regulation of gene expression by effectors that bind to RNA. , 2004, Current opinion in microbiology.

[6]  Ali Nahvi,et al.  An mRNA structure that controls gene expression by binding S-adenosylmethionine , 2003, Nature Structural Biology.

[7]  J. Kieft,et al.  A general method for rapid and nondenaturing purification of RNAs. , 2004, RNA.

[8]  R. Micura,et al.  Folding of a transcriptionally acting PreQ1 riboswitch , 2010, Proceedings of the National Academy of Sciences.

[9]  Karissa Y. Sanbonmatsu,et al.  Tertiary contacts control switching of the SAM-I riboswitch , 2010, Nucleic acids research.

[10]  A. Goffeau,et al.  The complete genome sequence of the Gram-positive bacterium Bacillus subtilis , 1997, Nature.

[11]  S. Jha,et al.  Conformational heterogeneity of the SAM-I riboswitch transcriptional ON state: a chaperone-like role for S-adenosyl methionine. , 2012, Journal of molecular biology.

[12]  A Danchin,et al.  Analysis of a Bacillus subtilis genome fragment using a co-operative computer system prototype. , 1995, Gene.

[13]  Christian F. Perez,et al.  Folding energy landscape of the thiamine pyrophosphate riboswitch aptamer , 2012, Proceedings of the National Academy of Sciences.

[14]  R. Breaker,et al.  Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithiamine. , 2005, Chemistry & biology.

[15]  R. Breaker,et al.  Riboswitches that sense S-adenosylmethionine and S-adenosylhomocysteine. , 2008, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[16]  Ian R Kleckner,et al.  Tuning riboswitch regulation through conformational selection. , 2011, Journal of molecular biology.

[17]  Vitaly Epshtein,et al.  The riboswitch-mediated control of sulfur metabolism in bacteria , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[18]  W. Winkler,et al.  Magnesium-sensing riboswitches in bacteria , 2010, RNA biology.

[19]  E. Obayashi,et al.  Crystallization of RNA-protein complexes. , 2007, Methods in molecular biology.

[20]  Evgeny Nudler,et al.  Sensing Small Molecules by Nascent RNA A Mechanism to Control Transcription in Bacteria , 2002, Cell.

[21]  J. Hines,et al.  Structure-activity studies of RNA-binding oxazolidinone derivatives. , 2011, Bioorganic & medicinal chemistry letters.

[22]  S. Woodson Metal ions and RNA folding: a highly charged topic with a dynamic future. , 2005, Current opinion in chemical biology.

[23]  Tina M. Henkin,et al.  Natural Variability in S-Adenosylmethionine (SAM)-Dependent Riboswitches: S-Box Elements in Bacillus subtilis Exhibit Differential Sensitivity to SAM In Vivo and In Vitro , 2007, Journal of bacteriology.

[24]  Shantenu Jha,et al.  A mechanism for S-adenosyl methionine assisted formation of a riboswitch conformation: a small molecule with a strong arm , 2009, Nucleic acids research.

[25]  R. Breaker,et al.  Design and antimicrobial action of purine analogues that bind Guanine riboswitches. , 2009, ACS chemical biology.

[26]  D. Mathews,et al.  Improved RNA secondary structure prediction by maximizing expected pair accuracy. , 2009, RNA.

[27]  M. Fedor,et al.  Kinetics and thermodynamics make different contributions to RNA folding in vitro and in yeast. , 2005, Molecular cell.

[28]  Jeffrey E. Barrick,et al.  Metabolite-binding RNA domains are present in the genes of eukaryotes. , 2003, RNA.

[29]  J. Dainko,et al.  The alkaline hydrolysis of S-adenosylmethionine in tritiated water. , 1962, Biochemical and biophysical research communications.

[30]  Ronald R. Breaker,et al.  Roseoflavin is a natural antibacterial compound that binds to FMN riboswitches and regulates gene expression , 2009, RNA biology.

[31]  Shantenu Jha,et al.  Energy landscape analysis for regulatory RNA finding using scalable distributed cyberinfrastructure , 2011, Concurr. Comput. Pract. Exp..

[32]  R. Montange,et al.  Free state conformational sampling of the SAM-I riboswitch aptamer domain. , 2010, Structure.

[33]  Ronny Lorenz,et al.  The Vienna RNA Websuite , 2008, Nucleic Acids Res..

[34]  Shana Topp,et al.  Emerging applications of riboswitches in chemical biology. , 2010, ACS chemical biology.

[35]  R. Montange,et al.  Discrimination between closely related cellular metabolites by the SAM-I riboswitch. , 2010, Journal of molecular biology.

[36]  D. Lilley,et al.  Ion-induced folding of a kink turn that departs from the conventional sequence , 2009, Nucleic acids research.

[37]  D. Lafontaine,et al.  Core requirements of the adenine riboswitch aptamer for ligand binding. , 2007, RNA.

[38]  R. Breaker,et al.  Control of alternative RNA splicing and gene expression by eukaryotic riboswitches , 2007, Nature.

[39]  Alexander Schug,et al.  Nonlocal helix formation is key to understanding S-adenosylmethionine-1 riboswitch function. , 2009, Biophysical journal.

[40]  A. Ferré-D’Amaré,et al.  Ribozymes and riboswitches: modulation of RNA function by small molecules , 2009, Biochemistry.

[41]  R. Batey Recognition of S‐adenosylmethionine by riboswitches , 2011, Wiley interdisciplinary reviews. RNA.

[42]  F. Major,et al.  The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data , 2008, Nature.

[43]  Ali Nahvi,et al.  Genetic control by a metabolite binding mRNA. , 2002, Chemistry & biology.

[44]  R. Montange,et al.  Structure of the S-adenosylmethionine riboswitch regulatory mRNA element , 2006, Nature.

[45]  S. Rüdisser,et al.  A simple and efficient method to reduce nontemplated nucleotide addition at the 3 terminus of RNAs transcribed by T7 RNA polymerase. , 1999, RNA.

[46]  D. Crothers,et al.  The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. , 2005, Molecular cell.

[47]  A. Serganov The long and the short of riboswitches. , 2009, Current opinion in structural biology.

[48]  Namhee Kim,et al.  Analysis of riboswitch structure and function by an energy landscape framework. , 2009, Journal of molecular biology.

[49]  Markus Wieland,et al.  Artificial Riboswitches: Synthetic mRNA‐Based Regulators of Gene Expression , 2008, Chembiochem : a European journal of chemical biology.

[50]  C. Oubridge,et al.  Crystallization of RNA-protein complexes. I. Methods for the large-scale preparation of RNA suitable for crystallographic studies. , 1995, Journal of molecular biology.

[51]  T. Henkin,et al.  Transcription termination control of the S box system: Direct measurement of S-adenosylmethionine by the leader RNA , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Peter Daldrop,et al.  RNA Tertiary Interactions in a Riboswitch Stabilize the Structure of a Kink Turn , 2011, Structure.

[53]  R. Breaker,et al.  Antibacterial lysine analogs that target lysine riboswitches. , 2007, Nature chemical biology.

[54]  O. Uhlenbeck,et al.  Synthesis of small RNAs using T7 RNA polymerase. , 1989, Methods in enzymology.

[55]  Alain Laederach,et al.  Disease-Associated Mutations That Alter the RNA Structural Ensemble , 2010, PLoS genetics.

[56]  R. Batey,et al.  Determining structures of RNA aptamers and riboswitches by X-ray crystallography. , 2009, Methods in molecular biology.

[57]  Kirsten L. Frieda,et al.  Direct Observation of Hierarchical Folding in Single Riboswitch Aptamers , 2008, Science.

[58]  Katherine E Deigan,et al.  Riboswitches: discovery of drugs that target bacterial gene-regulatory RNAs. , 2011, Accounts of chemical research.

[59]  D. Lafontaine,et al.  Folding of the SAM aptamer is determined by the formation of a K-turn-dependent pseudoknot. , 2008, Biochemistry.

[60]  K. M. Helena Nevalainen,et al.  Gene Cassette PCR: Sequence-Independent Recovery of Entire Genes from Environmental DNA , 2001, Applied and Environmental Microbiology.

[61]  R. Breaker,et al.  Riboswitches as antibacterial drug targets , 2006, Nature Biotechnology.

[62]  R. Micura,et al.  The dynamic nature of RNA as key to understanding riboswitch mechanisms. , 2011, Accounts of chemical research.

[63]  A. Danchin,et al.  The metIC operon involved in methionine biosynthesis in Bacillus subtilis is controlled by transcription antitermination. , 2002, Microbiology.

[64]  D. Lafontaine,et al.  Folding of the lysine riboswitch: importance of peripheral elements for transcriptional regulation , 2010, Nucleic acids research.

[65]  D. Lilley,et al.  Novel Ligands for a Purine Riboswitch Discovered by RNA-Ligand Docking , 2011, Chemistry & biology.

[66]  T. Henkin,et al.  Riboswitch RNAs: Regulation of gene expression by direct monitoring of a physiological signal , 2010, RNA biology.

[67]  T. Henkin,et al.  The S box regulon: a new global transcription termination control system for methionine and cysteine biosynthesis genes in Gram‐positive bacteria , 1998, Molecular microbiology.

[68]  Niles A. Pierce,et al.  An algorithm for computing nucleic acid base‐pairing probabilities including pseudoknots , 2004, J. Comput. Chem..

[69]  Alan S. Perelson,et al.  Base Pairing Probabilities in a Complete HIV-1 RNA , 1996, J. Comput. Biol..

[70]  Ye Ding Statistical and Bayesian approaches to RNA secondary structure prediction. , 2006, RNA.

[71]  D. Lafontaine,et al.  Molecular insights into the ligand-controlled organization of the SAM-I riboswitch. , 2011, Nature chemical biology.

[72]  T. Henkin,et al.  SAM recognition and conformational switching mechanism in the Bacillus subtilis yitJ S box/SAM-I riboswitch. , 2010, Journal of molecular biology.

[73]  M. Schmitz,et al.  Base-pair probability profiles of RNA secondary structures , 1992, Comput. Appl. Biosci..

[74]  H. Sigel,et al.  Structural and catalytic roles of metal ions in RNA. , 2011, Metal ions in life sciences.

[75]  T. Henkin,et al.  The GA motif: an RNA element common to bacterial antitermination systems, rRNA, and eukaryotic RNAs. , 2001, RNA.

[76]  R. Batey,et al.  Beyond Crystallography: Investigating the Conformational Dynamics of the Purine Riboswitch , 2009 .

[77]  D. Crothers,et al.  The kinetics of ligand binding by an adenine-sensing riboswitch. , 2005, Biochemistry.

[78]  Tina M Henkin,et al.  Variable sequences outside the SAM-binding core critically influence the conformational dynamics of the SAM-III/SMK box riboswitch. , 2011, Journal of molecular biology.

[79]  C. Abell,et al.  Fragment screening against the thiamine pyrophosphate riboswitchthiM , 2011 .