Urban aerosol radiative properties: Measurements during the 1999 Atlanta Supersite Experiment

calculated with a Mie code yielding Eap = 9.5 ± 1.5 m 2 g 1 , while EC mass summed from the impactor stages in comparison to measured sap gives Eap = 9.3 ± 3.2 m 2 g 1 .M ie light-scattering calculations using inputs of measured mass and EC size distributions give geometric mean light scattering and absorption Dp = 0.54 and 0.13 mm, respectively, and show the dominance of the submicrometer diameter particles to light extinction in the urban environment. Based on the measured aerosol optical depth in Atlanta, da (500 nm) = 0.44 ± 0.22, and other radiative measurements, a best estimate of the average direct aerosol radiative forcing at the top of the atmosphere (a measure of the climate significance) is F= 11 ± 6 W m 2 in Atlanta. This value is an order of magnitude greater than global mean estimates for aerosols underscoring the influence of aerosol particles on radiative transfer in the urban environment. INDEX TERMS: 0305 Atmospheric Composition and Structure: Aerosols and particles (0345, 4801); 0394 Atmospheric Composition and

[1]  G. Griffing Relations between the prevailing visibility, nephelometer scattering coefficient and sunphotometer turbidity coefficient , 1980 .

[2]  J. Ogren,et al.  Determining Aerosol Radiative Properties Using the TSI 3563 Integrating Nephelometer , 1998 .

[3]  S. C. Liu,et al.  Case study of the effects of atmospheric aerosols and regional haze on agriculture: an opportunity to enhance crop yields in China through emission controls? , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[4]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[5]  F. Lurmann,et al.  Evaluation of the TEOM method for measurement of ambient particulate mass in urban areas. , 1997, Journal of the Air & Waste Management Association.

[6]  R. Weber,et al.  Short-Term Temporal Variation in PM2.5 Mass and Chemical Composition during the Atlanta Supersite Experiment, 1999 , 2003, Journal of the Air & Waste Management Association.

[7]  William J Parkhurst,et al.  Historic PM2.5/PM10 Concentrations in the Southeastern United States-Potential Implications of the Revised Particulate Matter Standard. , 1999, Journal of the Air & Waste Management Association.

[8]  I. Tang Thermodynamic and optical properties of mixed‐salt aerosols of atmospheric importance , 1997 .

[9]  J. Kiehl,et al.  The Relative Roles of Sulfate Aerosols and Greenhouse Gases in Climate Forcing , 1993, Science.

[10]  A. Russell,et al.  Daily sampling of PM2.5 in Atlanta: Results of the first year of the Assessment of Spatial Aerosol Composition in Atlanta study , 2003 .

[11]  J. Penner,et al.  Quantifying and minimizing uncertainty of climate forcing by anthropogenic aerosols , 1994 .

[12]  J. Ogren,et al.  Scattering and absorption coefficients vs. Chemical composition of fine atmospheric aerosol particles under regional conditions in Hungary , 1998 .

[13]  Penner,et al.  Carbonaceous aerosols influencing atmospheric radiation: Black and organic carbon , 1994 .

[14]  R. Dickerson,et al.  Thunderstorms: An Important Mechanism in the Transport of Air Pollutants , 1987, Science.

[15]  Kenneth L. Rubow,et al.  A Microorifice Uniform Deposit Impactor (MOUDI): Description, Calibration, and Use , 1991 .

[16]  J. Chow,et al.  Aerosol properties at a midlatitude Northern Hemisphere continental site , 2001 .

[17]  H. Brink,et al.  Evaporative losses of ammonium nitrate in nephelometry and impactor measurements , 1996 .

[18]  H. Hansson,et al.  A statistical examination of the chemical differences between interstitial and scavenged aerosol , 1992 .

[19]  Randall Guensler,et al.  Spatial and Statistical Analysis of Commercial Vehicle Activity in Metropolitan Atlanta , 1998 .

[20]  R. Cary,et al.  Elemental Carbon-Based Method for Monitoring Occupational Exposures to Particulate Diesel Exhaust , 1996 .

[21]  Haze and sulfur emission trends in the eastern United States , 1993 .

[22]  S. Larson,et al.  Effect of Surfactant Layers on the Size Changes of Aerosol Particles as a Function of Relative Humidity , 1993 .

[23]  Judith C. Chow,et al.  The dri thermal/optical reflectance carbon analysis system: description, evaluation and applications in U.S. Air quality studies , 1993 .

[24]  A. Lacis,et al.  The influence on climate forcing of mineral aerosols from disturbed soils , 1996, Nature.

[25]  W. Wilson,et al.  Fine particles and coarse particles: concentration relationships relevant to epidemiologic studies. , 1997, Journal of the Air & Waste Management Association.

[26]  Irina N. Sokolik,et al.  Direct radiative forcing by anthropogenic airborne mineral aerosols , 1996, Nature.

[27]  William L. Chameides,et al.  Aerosol radiative, physical, and chemical properties in Beijing during June 1999 , 2001 .

[28]  M. Jacobson Development and application of a new air pollution modeling system-part I: Gas-phase simulations , 1997 .

[29]  Barbara J. Turpin,et al.  Measuring and simulating particulate organics in the atmosphere: problems and prospects , 2000 .

[30]  Judith C. Chow,et al.  Comparison of IMPROVE and NIOSH Carbon Measurements , 2001 .

[31]  C. Lewis,et al.  Visibility and aerosol composition in Houston, Texas , 1982 .

[32]  J. Chow,et al.  Results of the "Carbon Conference" International Aerosol Carbon Round Robin Test Stage I , 2001 .

[33]  Harvey Patashnick,et al.  Continuous PM-10 Measurements Using the Tapered Element Oscillating Microbalance , 1990 .

[34]  John L. Gras,et al.  TEOM vs. manual gravimetric methods for determination of PM2.5 aerosol mass concentrations , 1999 .

[35]  Petr Chylek,et al.  The Two-Stream Approximation in Radiative Transfer: Including the Angle of the Incident Radiation , 1975 .

[36]  J. Heintzenberg,et al.  Aerosol Optical properties at Sagres, Portugal during ACE‐2 , 2000 .

[37]  A. Ångström The parameters of atmospheric turbidity , 1964 .

[38]  G. Cass,et al.  INDOEX aerosol: A comparison and summary of chemical, microphysical, and optical properties observed from land, ship, and aircraft , 2002 .

[39]  Xin Wang,et al.  The Relationship between Mass and Mobility for Atmospheric Particles: A New Technique for Measuring Particle Density , 2002 .

[40]  H Patashnick,et al.  Development of a Sample Equilibration System for the TEOM Continuous PM Monitor , 2000, Journal of the Air & Waste Management Association.

[41]  T. Larson,et al.  In-situ, rapid response measurement of H2SO4/(NH4)2SO4 aerosols in urban Houston: A comparison with rural Virginia , 1983 .

[42]  M. Thekaekara,et al.  Solar energy outside the earth's atmosphere. , 1973 .

[43]  M. L. Laucks,et al.  Aerosol Technology Properties, Behavior, and Measurement of Airborne Particles , 2000 .

[44]  S. Kinne,et al.  Aerosol climate effects: Local radiative forcing and column closure experiments , 1997 .

[45]  Hélène Cachier,et al.  Optical and thermal measurements of black carbon aerosol content in different environments: Variation of the specific attenuation cross-section, sigma (σ) , 1993 .

[46]  B. Turpin,et al.  Measurements of relative humidity-dependent bounce and density for atmospheric particles using the DMA-impactor technique , 1994 .

[47]  Tami C. Bond,et al.  Calibration and Intercomparison of Filter-Based Measurements of Visible Light Absorption by Aerosols , 1999 .

[48]  J. Coakley,et al.  Climate Forcing by Anthropogenic Aerosols , 1992, Science.

[49]  S. Schwartz,et al.  Evaporation of Ammonium Nitrate Aerosol in a Heated Nephelometer: Implications for Field Measurements , 1997 .

[50]  L. Gundel,et al.  Sorbent-Coated Diffusion Denuders for Direct Measurement of Gas/Particle Partitioning by Semi-Volatile Organic Compounds , 2020, Gas and Particle Phase Measurements of Atmospheric Organic Compounds.

[51]  S. Schwartz The whitehouse effect—Shortwave radiative forcing of climate by anthropogenic aerosols: an overview , 1996 .

[52]  C. Zender,et al.  Direct radiative forcing and atmospheric absorption by boundary layer aerosols in the southeastern US: model estimates on the basis of new observations , 2001 .

[53]  H. Horvath Size segregated light absorption coefficient of the atmospheric aerosol , 1995 .

[54]  P. Solomon,et al.  Intercomparison of near real time monitors of PM2.5 nitrate and sulfate at the U.S. Environmental Protection Agency Atlanta Supersite , 2003 .

[55]  M. Bergin,et al.  Impact of atmospheric aerosol light scattering and absorption on terrestrial net primary productivity , 2002 .

[56]  R. Charlson,et al.  Atmospheric aerosols, humidity, and visibility , 1980 .

[57]  D. Okrent Optimization of a Third Generation TEOM® Monitor for Measuring Diesel Particulate in Real-Time , 1998 .

[58]  A. Clarke Aerosol light absorption by soot in remote environments , 1989 .

[59]  Michael H. Bergin,et al.  Measurement of aerosol chemical, physical and radiative properties in the Yangtze delta region of China , 2002 .

[60]  I. Tang Chemical and size effects of hygroscopic aerosols on light scattering coefficients , 1996 .

[61]  J. Haywood,et al.  Multi‐spectral calculations of the direct radiative forcing of tropospheric sulphate and soot aerosols using a column model , 1997 .

[62]  Paulette Middleton,et al.  A three‐dimensional Eulerian acid deposition model: Physical concepts and formulation , 1987 .

[63]  G. Stenchikov,et al.  The impact of aerosols on solar ultraviolet radiation and photochemical smog. , 1997, Science.

[64]  A. Ångström The parameters of atmospheric turbidity , 1964 .

[65]  P. Mcmurry,et al.  Size distributions of ambient organic and elemental carbon , 1989 .

[66]  H. Horvath Atmospheric light absorption : a review , 1993 .

[67]  R. Charlson,et al.  Optical characteristics of atmospheric aerosols , 1981 .

[68]  Beat Schmid,et al.  Comparison of Aerosol Single Scattering Albedos Derived by Diverse Techniques in Two North Atlantic Experiments , 2002 .

[69]  J. Haywood,et al.  The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget , 1995 .

[70]  J. Deluisi,et al.  Aerosol optical depths over the Atlantic derived from shipboard sunphotometer observations during the 1988 Global Change Expedition , 1990 .

[71]  J. Ogren,et al.  Aerosol light scattering properties at Cape Grim, Tasmania, during the First Aerosol Characterization Experiment (ACE 1) , 1998 .

[72]  J. Huntzicker,et al.  Secondary formation of organic aerosol in the Los Angeles basin: A descriptive analysis of organic and elemental carbon concentrations , 1991 .

[73]  W. Malm,et al.  Spatial and seasonal trends in particle concentration and optical extinction in the United States , 1994 .

[74]  G. Wolff,et al.  Visibility-reducing species in the denver “brown cloud”—I. Relationships between extinction and chemical composition , 1981 .