$\mathcal{H}_{\infty}$ static output-feedback controllers with past outputs for discrete-time uncertain linear systems

This work investigates the problem of designing robust $\mathcal{H}_{\infty}$ static output-feedback controllers for uncertain linear discrete time-invariant systems where all matrices are supposed to be affected by polytopic uncertainties. The proposed control law employs a fixed number of past measured outputs, thus enhancing the dynamics of the closed-loop system and producing controllers with memory. The method for synthesizing the memory controllers relies on a two-phase algorithm. In the first phase a parameter-dependent state-feedback gain is designed and, then, it is used as input to the second phase in which the robust memory static output-feedback controller is synthesized. Numerical examples illustrate the advantages of the proposed approach in terms of $\mathcal{H}_{\infty}$ performance when compared to other methods available in the literature.

[1]  Young Hoon Joo,et al.  FIR-type robust H2 and H∞ control of discrete linear time-invariant polytopic systems via memory state-feedback control laws , 2015 .

[2]  Ricardo C. L. F. Oliveira,et al.  Robust ℋ︁2 static output feedback design starting from a parameter‐dependent state feedback controller for time‐invariant discrete‐time polytopic systems , 2011 .

[3]  D. Peaucelle,et al.  An efficient numerical solution for H2 static output feedback synthesis , 2001, 2001 European Control Conference (ECC).

[4]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .

[5]  Karolos M. Grigoriadis,et al.  A unified algebraic approach to linear control design , 1998 .

[6]  Olivier Bachelier,et al.  Static output feedback design for uncertain linear discrete time systems , 2004, IMA J. Math. Control. Inf..

[7]  Tetsuya Iwasaki,et al.  Robust performance analysis for systems with structured uncertainty , 1996 .

[8]  Graziano Chesi Robust Static Output Feedback Controllers via Robust Stabilizability Functions , 2014, IEEE Trans. Autom. Control..

[9]  Tetsuya Iwasaki,et al.  All controllers for the general H∞ control problem: LMI existence conditions and state space formulas , 1994, Autom..

[10]  Dimitri Peaucelle,et al.  Robust Static Output Feedback Stabilization for Polytopic Uncertain Systems: Improving the Guaranteed Performance Bound , 2003 .

[11]  Ricardo C. L. F. Oliveira,et al.  Robust H∞ filter design with past output measurements for uncertain discrete-time systems , 2016, Autom..

[12]  Ricardo C. L. F. Oliveira,et al.  LMI Relaxations for Reduced-Order Robust ${\cal H}_{\infty}$ Control of Continuous-Time Uncertain Linear Systems , 2012, IEEE Transactions on Automatic Control.

[13]  Alexandre Trofino,et al.  Sufficient LMI conditions for output feedback control problems , 1999, IEEE Trans. Autom. Control..

[14]  Sérgio Ricardo de Souza,et al.  Output Feedback Stabilization of Uncertain Systems through a Min/Max Problem* , 1993 .

[15]  Young Hoon Joo,et al.  FIR-type state-feedback control law for discrete-time LTI systems with polytopic uncertainties , 2016 .

[16]  S. Bhattacharyya,et al.  Robust control with structure perturbations , 1988 .

[17]  Didier Henrion,et al.  Convergent relaxations of polynomial matrix inequalities and static output feedback , 2006, IEEE Transactions on Automatic Control.

[18]  S. Bhattacharyya,et al.  Robust control with structured perturbations , 1987, 26th IEEE Conference on Decision and Control.

[19]  James Lam,et al.  Static Output Feedback Stabilization: An ILMI Approach , 1998, Autom..

[20]  Ricardo C. L. F. Oliveira,et al.  Parameter-Dependent LMIs in Robust Analysis: Characterization of Homogeneous Polynomially Parameter-Dependent Solutions Via LMI Relaxations , 2007, IEEE Transactions on Automatic Control.

[21]  Jose C. Geromel,et al.  An alternate numerical solution to the linear quadratic problem , 1994, IEEE Trans. Autom. Control..

[22]  L. Ghaoui,et al.  A cone complementarity linearization algorithm for static output-feedback and related problems , 1996, Proceedings of Joint Conference on Control Applications Intelligent Control and Computer Aided Control System Design.

[23]  Robert E. Skelton,et al.  Static output feedback controllers: stability and convexity , 1998, IEEE Trans. Autom. Control..

[24]  Dimitri Peaucelle,et al.  Periodically time-varying memory state-feedback controller synthesis for discrete-time linear systems , 2011, Autom..

[25]  P. Dorato,et al.  Static output feedback: a survey , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[26]  J. Geromel,et al.  Convex analysis of output feedback control problems: robust stability and performance , 1996, IEEE Trans. Autom. Control..

[27]  Ricardo C. L. F. Oliveira,et al.  Robust non‐minimal order filter and smoother design for discrete‐time uncertain systems , 2017 .

[28]  J. Geromel,et al.  Extended H 2 and H norm characterizations and controller parametrizations for discrete-time systems , 2002 .

[29]  C. M. Agulhari,et al.  Robust ℋ∞ static output-feedback design for time-invariant discrete-time polytopic systems from parameter-dependent state-feedback gains , 2010, Proceedings of the 2010 American Control Conference.

[30]  Guang-Hong Yang,et al.  Static Output Feedback Control Synthesis for Linear Systems With Time-Invariant Parametric Uncertainties , 2007, IEEE Transactions on Automatic Control.