Simulation of delamination in composites under high-cycle fatigue

A damage model for the simulation of delamination propagation under high-cycle fatigue loading is proposed. The basis for the formulation is a cohesive law that links fracture and damage mechanics to establish the evolution of the damage variable in terms of the crack growth rate dA/dN. The damage state is obtained as a function of the loading conditions as well as the experimentally-determined coefficients of the Paris law crack propagation rates for the material. It is shown that by using the constitutive fatigue damage model in a structural analysis, experimental results can be reproduced without the need of additional model-specific curve-fitting parameters.

[1]  Ugo Galvanetto,et al.  On the numerical simulation of fatigue driven delamination with interface elements , 2006 .

[2]  T. Siegmund,et al.  An irreversible cohesive zone model for interface fatigue crack growth simulation , 2003 .

[3]  Leif Asp,et al.  Mixed-mode delamination growth in carbon-fibre composite laminates under cyclic loading , 2004 .

[4]  Pedro P. Camanho,et al.  A damage model for the simulation of delamination in advanced composites under variable-mode loading , 2006 .

[5]  Emile S. Greenhalgh,et al.  Delamination Growth and Thresholds in a Carbon/Epoxy Composite under Fatigue Loading , 2001 .

[6]  Alberto Corigliano,et al.  Modeling and simulation of crack propagation in mixed-modes interlaminar fracture specimens , 1996 .

[7]  Michael Ortiz,et al.  A cohesive model of fatigue crack growth , 2001 .

[8]  M. A. Crisfield,et al.  Progressive Delamination Using Interface Elements , 1998 .

[9]  M. Benzeggagh,et al.  Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus , 1996 .

[10]  F. L. Matthews,et al.  Predicting Progressive Delamination of Composite Material Specimens via Interface Elements , 1999 .

[11]  J. C. Simo,et al.  Strain- and stress-based continuum damage models—I. Formulation , 1987 .

[12]  Pedro P. Camanho,et al.  An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models , 2007 .

[13]  David L. McDowell,et al.  An engineering model for propagation of small cracks in fatigue , 1997 .

[14]  P. C. Paris,et al.  A Critical Analysis of Crack Propagation Laws , 1963 .

[15]  Damodar R. Ambur,et al.  Intralaminar and interlaminar progressive failure analyses of composite panels with circular cutouts , 2002 .

[16]  J. Hutchinson,et al.  The relation between crack growth resistance and fracture process parameters in elastic-plastic solids , 1992 .

[17]  Alberto Corigliano,et al.  Damage analysis of interlaminar fracture specimens , 1995 .

[18]  D. Borst,et al.  A NON-LINEAR FINITE ELEMENT APPROACH FOR THE ANALYSIS OF MODE-I FREE EDGE DELAMINATION IN COMPOSITES , 1993 .

[19]  Xiaopeng Xu,et al.  Numerical simulations of fast crack growth in brittle solids , 1994 .

[20]  Robin Olsson,et al.  Assessment of evaluation methods for the mixed-mode bending test , 1999 .

[21]  Michael R Wisnom,et al.  A combined stress-based and fracture-mechanics-based model for predicting delamination in composites , 1993 .

[22]  M. Ortiz,et al.  FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .

[23]  Pedro P. Camanho,et al.  An Engineering Solution for Solving Mesh Size Effects in the Simulation of Delamination with Cohesive Zone Models , 2007 .

[24]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[25]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[26]  Mgd Marc Geers,et al.  Gradient‐enhanced damage modelling of high‐cycle fatigue , 2000 .

[27]  F. J. Mello,et al.  Modeling the Initiation and Growth of Delaminations in Composite Structures , 1996 .

[28]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .

[29]  M. Crisfield,et al.  Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues , 2001 .

[30]  Paul Robinson,et al.  Numerical simulation of fatigue‐driven delamination using interface elements , 2005 .

[31]  Qingda Yang,et al.  A cohesive zone model for low cycle fatigue life prediction of solder joints , 2004 .

[32]  A. Needleman A Continuum Model for Void Nucleation by Inclusion Debonding , 1987 .

[33]  W. Van Paepegem,et al.  Fatigue degradation modelling of plain woven glass/epoxy composites , 2001 .

[34]  P. Camanho,et al.  Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials , 2003 .

[35]  N. Dowling,et al.  Fatigue Crack Growth During Gross Plasticity and the J-Integral , 1976 .

[36]  P. Paris A rational analytic theory of fatigue , 1961 .

[37]  Vinay K. Goyal,et al.  COHESIVE-DECOHESIVE INTERFACIAL CONSTITUTIVE LAW FOR THE ANALYSES OF FATIGUE CRACK INITIATION AND GROWTH , 2003 .

[38]  Carlos G. Davila,et al.  Irreversible constitutive law for modeling the delamination process using interfacial surface discontinuities , 2004 .

[39]  Masaki Hojo,et al.  Effect of stress ratio on near-threshold propagation of delimination fatigue cracks in unidirectional CFRP , 1987 .