Return Words and Bifix Codes in Eventually Dendric Sets
暂无分享,去创建一个
[1] Dominique Perrin,et al. Neutral and tree sets of arbitrary characteristic , 2017, Theor. Comput. Sci..
[2] Dominique Perrin,et al. Maximal bifix decoding , 2013, Discret. Math..
[3] Edita Pelantová,et al. Sequences with constant number of return words , 2006, ArXiv.
[4] Dominique Perrin,et al. Eventually Dendric Shifts , 2019, CSR.
[5] Christophe Reutenauer,et al. Acyclic, connected and tree sets , 2013, Monatshefte für Mathematik.
[6] Sébastien Ferenczi,et al. Rank and symbolic complexity , 1996, Ergodic Theory and Dynamical Systems.
[7] C. Mauduit,et al. Substitutions in dynamics, arithmetics, and combinatorics , 2002 .
[8] Julien Leroy. Some improvements of the S-adic conjecture , 2012, Adv. Appl. Math..
[9] Dominique Perrin,et al. Bifix codes and interval exchanges , 2014, 1408.0389.
[10] Julien Cassaigne,et al. Complexité et facteurs spéciaux , 1997 .
[11] Dominique Perrin,et al. Specular sets , 2015, Theoretical Computer Science.
[12] Jean Berstel,et al. Bifix codes and Sturmian words , 2010, ArXiv.
[13] Gérard Rauzy,et al. Représentation géométrique de suites de complexité $2n+1$ , 1991 .
[14] J. Cassaigne,et al. Combinatorics, Automata and Number Theory: Factor complexity , 2010 .
[15] Julien Leroy,et al. Do the Properties of an S-adic Representation Determine Factor Complexity? , 2013 .
[16] M. Queffélec. Substitution dynamical systems, spectral analysis , 1987 .