Robust attitude controller design for miniature quadrotors

This paper addresses the robust attitude control problem of miniature quadrotors. A simplified linear dynamical model is obtained for each attitude angle, whereas nonlinear dynamics, interaxis coupling, parameter perturbations, and external disturbances are considered as uncertainties. For each channel, a linear time‐invariant and decoupled robust controller are proposed based on a linear reduced‐order observer and a robust compensator. The observer is applied to estimate the angular velocities, and the robust compensator is introduced for reducing the effects of uncertainties. It is proven that the estimation errors of angular velocities and angular tracking errors can converge to the given neighborhood of the origin in a finite time. Experimental results on the miniature quadrotor are presented to verify the effectiveness of the proposed control approach. Copyright © 2015 John Wiley & Sons, Ltd.

[1]  Yisheng Zhong Robust output tracking control of SISO plants with multiple operating points and with parametric and unstructured uncertainties , 2002 .

[2]  Rogelio Lozano,et al.  Real-time stabilization and tracking of a four-rotor mini rotorcraft , 2004, IEEE Transactions on Control Systems Technology.

[3]  Lorenzo Marconi,et al.  Robust nonlinear motion control of a helicopter , 2003, IEEE Trans. Autom. Control..

[4]  R. Mahony,et al.  Robust trajectory tracking for a scale model autonomous helicopter , 2004 .

[5]  Camillo J. Taylor,et al.  Control of a Quadrotor Helicopter Using Dual Camera Visual Feedback , 2005, Int. J. Robotics Res..

[6]  Abdelhamid Tayebi,et al.  Attitude stabilization of a VTOL quadrotor aircraft , 2006, IEEE Transactions on Control Systems Technology.

[7]  Tong Heng Lee,et al.  Design and implementation of an autonomous flight control law for a UAV helicopter , 2009, Autom..

[8]  G. Raffo,et al.  An integral predictive / nonlinear H ∞ control structure for a quadrotor helicopter , 2009 .

[9]  Frank L. Lewis,et al.  Dynamic inversion with zero-dynamics stabilisation for quadrotor control , 2009 .

[10]  Guilherme V. Raffo,et al.  An integral predictive/nonlinear Hinfinity control structure for a quadrotor helicopter , 2010, Autom..

[11]  Zongyu Zuo,et al.  Trajectory tracking control design with command-filtered compensation for a quadrotor , 2010 .

[12]  Claire J. Tomlin,et al.  Precision flight control for a multi-vehicle quadrotor helicopter testbed , 2011 .

[13]  Quan Quan,et al.  Attitude control of a quadrotor aircraft subject to a class of time-varying disturbances , 2011 .

[14]  Nicolas Marchand,et al.  Bounded attitude control of rigid bodies: Real-time experimentation to a quadrotor mini-helicopter , 2011 .

[15]  Raffaello D'Andrea,et al.  Quadrocopter Trajectory Generation and Control , 2011 .

[16]  Anthony Tzes,et al.  Switching model predictive attitude control for a quadrotor helicopter subject to atmospheric disturbances , 2011 .

[17]  Helene Piet-Lahanier,et al.  A hierarchical controller for miniature VTOL UAVs: Design and stability analysis using singular perturbation theory , 2011 .

[18]  Raffaello D'Andrea,et al.  Adaptive fast open-loop maneuvers for quadrocopters , 2012, Auton. Robots.

[19]  Marco A. Moreno-Armendáriz,et al.  The trajectory tracking problem for an unmanned four-rotor system: flatness-based approach , 2012, Int. J. Control.

[20]  Raffaello D'Andrea,et al.  Performance benchmarking of quadrotor systems using time-optimal control , 2012, Auton. Robots.

[21]  Peter I. Corke,et al.  Multirotor Aerial Vehicles: Modeling, Estimation, and Control of Quadrotor , 2012, IEEE Robotics & Automation Magazine.

[22]  Raffaello D'Andrea,et al.  Optimization-based iterative learning for precise quadrocopter trajectory tracking , 2012, Autonomous Robots.

[23]  J. Aracil,et al.  Three‐time scale singular perturbation control and stability analysis for an autonomous helicopter on a platform , 2013 .

[24]  Raffaello D'Andrea,et al.  Quadrocopter pole acrobatics , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[25]  Yisheng Zhong,et al.  Robust LQR Attitude Control of a 3-DOF Laboratory Helicopter for Aggressive Maneuvers , 2013, IEEE Transactions on Industrial Electronics.

[26]  Yisheng Zhong,et al.  Robust hierarchical control of a laboratory helicopter , 2014, J. Frankl. Inst..