Global asymptotic expansions of the Laguerre polynomials—a Riemann–Hilbert approach
暂无分享,去创建一个
[1] Roderick Wong,et al. Global Asymptotics of Krawtchouk Polynomials – a Riemann-Hilbert Approach* , 2007 .
[2] W. Van Assche,et al. The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on [-1,1] , 2001 .
[3] Zhen Wang,et al. Linear difference equations with transition points , 2004, Math. Comput..
[4] Pavel Bleher,et al. Double scaling limit in the random matrix model: The Riemann‐Hilbert approach , 2002, math-ph/0201003.
[5] Roderick Wong,et al. Bessel-type asymptotic expansions via the Riemann–Hilbert approach , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[6] R. Wong,et al. Uniform asymptotics of the Stieltjes–Wigert polynomials via the Riemann–Hilbert approach , 2006 .
[7] A. Kuijlaars,et al. Asymptotic Zero Behavior of Laguerre Polynomials with Negative Parameter , 2002, math/0205175.
[8] H. Li,et al. Asymptotic expansions for second-order linear difference equations , 1992 .
[9] Z. Wang,et al. Uniform asymptotic expansion of $J_\nu(\nu a)$ via a difference equation , 2002, Numerische Mathematik.
[10] M. Vanlessen,et al. Strong Asymptotics of Laguerre-Type Orthogonal Polynomials and Applications in Random Matrix Theory , 2005 .
[11] Peter D. Miller,et al. Discrete orthogonal polynomials: Asymptotics and applications , 2007 .
[12] P. Deift. Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .
[13] P. Deift,et al. An extension of the steepest descent method for Riemann-Hilbert problems: the small dispersion limit of the Korteweg-de Vries (KdV) equation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.
[14] P. Deift,et al. Asymptotics for the painlevé II equation , 1995 .
[15] E. B. Saff,et al. Asymptotics of orthogonal polynomials with respect to an analytic weight with algebraic singularities on the circle , 2006 .
[16] A. B. J. Kuijlaars,et al. A Riemann-Hilbert problem for biorthogonal polynomials , 2003 .
[17] Arno B. J. Kuijlaars,et al. Riemann-Hilbert Analysis for Orthogonal Polynomials , 2003 .
[18] E. Saff,et al. Logarithmic Potentials with External Fields , 1997, Grundlehren der mathematischen Wissenschaften.
[19] Stephanos Venakides,et al. UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .
[20] Lun Zhang,et al. Global asymptotics of Hermite polynomials via Riemann-Hilbert approach , 2007 .
[21] Pavel Bleher,et al. Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model , 1999, math-ph/9907025.
[22] F. Smithies,et al. Singular Integral Equations , 1977 .
[23] Roderick Wong,et al. Asymptotic approximations of integrals , 1989, Classics in applied mathematics.
[24] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[25] Walter Van Assche,et al. Strong Asymptotics for Relativistic Hermite Polynomials , 2003 .
[26] E. T. Copson. Asymptotic Expansions: Airy's Integral , 1965 .
[27] Stephanos Venakides,et al. Strong asymptotics of orthogonal polynomials with respect to exponential weights , 1999 .
[28] T. Kriecherbauer,et al. Strong asymptotics of polynomials orthogonal with respect to Freud weights , 1999 .
[29] Arno B. J. Kuijlaars,et al. Riemann-Hilbert Analysis for Laguerre Polynomials with Large Negative Parameter , 2001 .
[30] Z. Wang,et al. Asymptotic expansions for second-order linear difference equations with a turning point , 2003, Numerische Mathematik.
[31] Athanassios S. Fokas,et al. The isomonodromy approach to matric models in 2D quantum gravity , 1992 .
[32] E. Saff,et al. Szego Orthogonal Polynomials with Respect to an Analytic Weight: Canonical Representation and Strong Asymptotics , 2005, math/0502300.
[33] P. Deift,et al. A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1992, math/9201261.
[34] Roderick Wong,et al. Asymptotic Expansion of the Krawtchouk Polynomials and their Zeros , 2004 .
[35] Ramón A. Orive Rodríguez,et al. Riemann-Hilbert analysis for Jacobi polynomials orthogonal on a single contour , 2005, J. Approx. Theory.
[36] Roderick Wong,et al. ESTIMATES FOR THE ERROR TERM IN A UNIFORM ASYMPTOTIC EXPANSION OF THE JACOBI POLYNOMIALS , 2003 .
[37] Roderick Wong,et al. Uniform Asymptotic Expansions of Laguerre Polynomials , 1988 .
[38] C. Chester,et al. An extension of the method of steepest descents , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.
[39] A. Martínez-Finkelshtein,et al. Strong asymptotics for Jacobi polynomials with varying nonstandard parameters , 2003 .
[40] Luigi Gatteschi. Uniform Approximations for the Zeros of Laguerre Polynomials , 1988 .
[41] Stephanos Venakides,et al. Asymptotics for polynomials orthogonal with respect to varying exponential weights , 1997 .
[42] L. Gatteschi. Asymptotics and bounds for the zeros of Laguerre polynomials: a survey , 2002 .
[43] Roderick Wong,et al. Uniform asymptotics for Jacobi polynomials with varying large negative parameters— a Riemann-Hilbert approach , 2006 .
[44] F. Olver. Asymptotics and Special Functions , 1974 .
[45] Percy Deift,et al. Long-time behavior of the non-focusing nonlinear Schrödinger equation : a case study , 1994 .
[46] F. Smithies,et al. Singular Integral Equations , 1955, The Mathematical Gazette.
[47] P. Deift,et al. A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1993 .
[48] G. Szegő. Polynomials orthogonal on the unit circle , 1939 .
[49] Alexander Its,et al. The Nonlinear Steepest Descent Approach to the Asymptotics of the Second Painlevé Transcendent in the Complex Domain , 2002 .
[50] Roderick Wong,et al. Uniform Asymptotics for Orthogonal Polynomials with Exponential Weights—the Riemann–Hilbert Approach , 2005 .