Global asymptotic expansions of the Laguerre polynomials—a Riemann–Hilbert approach

By using the steepest descent method for Riemann–Hilbert problems introduced by Deift–Zhou (Ann Math 137:295–370, 1993), we derive two asymptotic expansions for the scaled Laguerre polynomial $L^{(\alpha)}_n(\nu z)$ as n→∞, where ν=4n+2α+2. One expansion holds uniformly in a right half-plane $\text{Re}\; z\geq \delta_1, 0<\delta_1<1$, which contains the critical point z=1; the other expansion holds uniformly in a left half-plane $\text{Re}\; z\leq 1-\delta_2, 0<\delta_2<1-\delta_1$, which contains the other critical point z=0. The two half-planes together cover the entire complex z-plane. The critical points z=1 and z=0 correspond, respectively, to the turning point and the singularity of the differential equation satisfied by $L^{(\alpha)}_n(\nu z)$.

[1]  Roderick Wong,et al.  Global Asymptotics of Krawtchouk Polynomials – a Riemann-Hilbert Approach* , 2007 .

[2]  W. Van Assche,et al.  The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on [-1,1] , 2001 .

[3]  Zhen Wang,et al.  Linear difference equations with transition points , 2004, Math. Comput..

[4]  Pavel Bleher,et al.  Double scaling limit in the random matrix model: The Riemann‐Hilbert approach , 2002, math-ph/0201003.

[5]  Roderick Wong,et al.  Bessel-type asymptotic expansions via the Riemann–Hilbert approach , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  R. Wong,et al.  Uniform asymptotics of the Stieltjes–Wigert polynomials via the Riemann–Hilbert approach , 2006 .

[7]  A. Kuijlaars,et al.  Asymptotic Zero Behavior of Laguerre Polynomials with Negative Parameter , 2002, math/0205175.

[8]  H. Li,et al.  Asymptotic expansions for second-order linear difference equations , 1992 .

[9]  Z. Wang,et al.  Uniform asymptotic expansion of $J_\nu(\nu a)$ via a difference equation , 2002, Numerische Mathematik.

[10]  M. Vanlessen,et al.  Strong Asymptotics of Laguerre-Type Orthogonal Polynomials and Applications in Random Matrix Theory , 2005 .

[11]  Peter D. Miller,et al.  Discrete orthogonal polynomials: Asymptotics and applications , 2007 .

[12]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[13]  P. Deift,et al.  An extension of the steepest descent method for Riemann-Hilbert problems: the small dispersion limit of the Korteweg-de Vries (KdV) equation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[14]  P. Deift,et al.  Asymptotics for the painlevé II equation , 1995 .

[15]  E. B. Saff,et al.  Asymptotics of orthogonal polynomials with respect to an analytic weight with algebraic singularities on the circle , 2006 .

[16]  A. B. J. Kuijlaars,et al.  A Riemann-Hilbert problem for biorthogonal polynomials , 2003 .

[17]  Arno B. J. Kuijlaars,et al.  Riemann-Hilbert Analysis for Orthogonal Polynomials , 2003 .

[18]  E. Saff,et al.  Logarithmic Potentials with External Fields , 1997, Grundlehren der mathematischen Wissenschaften.

[19]  Stephanos Venakides,et al.  UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .

[20]  Lun Zhang,et al.  Global asymptotics of Hermite polynomials via Riemann-Hilbert approach , 2007 .

[21]  Pavel Bleher,et al.  Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model , 1999, math-ph/9907025.

[22]  F. Smithies,et al.  Singular Integral Equations , 1977 .

[23]  Roderick Wong,et al.  Asymptotic approximations of integrals , 1989, Classics in applied mathematics.

[24]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[25]  Walter Van Assche,et al.  Strong Asymptotics for Relativistic Hermite Polynomials , 2003 .

[26]  E. T. Copson Asymptotic Expansions: Airy's Integral , 1965 .

[27]  Stephanos Venakides,et al.  Strong asymptotics of orthogonal polynomials with respect to exponential weights , 1999 .

[28]  T. Kriecherbauer,et al.  Strong asymptotics of polynomials orthogonal with respect to Freud weights , 1999 .

[29]  Arno B. J. Kuijlaars,et al.  Riemann-Hilbert Analysis for Laguerre Polynomials with Large Negative Parameter , 2001 .

[30]  Z. Wang,et al.  Asymptotic expansions for second-order linear difference equations with a turning point , 2003, Numerische Mathematik.

[31]  Athanassios S. Fokas,et al.  The isomonodromy approach to matric models in 2D quantum gravity , 1992 .

[32]  E. Saff,et al.  Szego Orthogonal Polynomials with Respect to an Analytic Weight: Canonical Representation and Strong Asymptotics , 2005, math/0502300.

[33]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1992, math/9201261.

[34]  Roderick Wong,et al.  Asymptotic Expansion of the Krawtchouk Polynomials and their Zeros , 2004 .

[35]  Ramón A. Orive Rodríguez,et al.  Riemann-Hilbert analysis for Jacobi polynomials orthogonal on a single contour , 2005, J. Approx. Theory.

[36]  Roderick Wong,et al.  ESTIMATES FOR THE ERROR TERM IN A UNIFORM ASYMPTOTIC EXPANSION OF THE JACOBI POLYNOMIALS , 2003 .

[37]  Roderick Wong,et al.  Uniform Asymptotic Expansions of Laguerre Polynomials , 1988 .

[38]  C. Chester,et al.  An extension of the method of steepest descents , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.

[39]  A. Martínez-Finkelshtein,et al.  Strong asymptotics for Jacobi polynomials with varying nonstandard parameters , 2003 .

[40]  Luigi Gatteschi Uniform Approximations for the Zeros of Laguerre Polynomials , 1988 .

[41]  Stephanos Venakides,et al.  Asymptotics for polynomials orthogonal with respect to varying exponential weights , 1997 .

[42]  L. Gatteschi Asymptotics and bounds for the zeros of Laguerre polynomials: a survey , 2002 .

[43]  Roderick Wong,et al.  Uniform asymptotics for Jacobi polynomials with varying large negative parameters— a Riemann-Hilbert approach , 2006 .

[44]  F. Olver Asymptotics and Special Functions , 1974 .

[45]  Percy Deift,et al.  Long-time behavior of the non-focusing nonlinear Schrödinger equation : a case study , 1994 .

[46]  F. Smithies,et al.  Singular Integral Equations , 1955, The Mathematical Gazette.

[47]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1993 .

[48]  G. Szegő Polynomials orthogonal on the unit circle , 1939 .

[49]  Alexander Its,et al.  The Nonlinear Steepest Descent Approach to the Asymptotics of the Second Painlevé Transcendent in the Complex Domain , 2002 .

[50]  Roderick Wong,et al.  Uniform Asymptotics for Orthogonal Polynomials with Exponential Weights—the Riemann–Hilbert Approach , 2005 .