The Physical Nature of Rest-UV Galaxy Morphology During the Peak Epoch of Galaxy Formation

Motivated by the irregular and little-understood morphologies of z similar to 2-3 galaxies, we use nonparametric coefficients to quantify the morphologies of 216 galaxies that have been spectroscopically confirmed to lie at redshifts z = 1.8-3.4 in the GOODS-N field. Using measurements of UV and optical spectral lines, multiband photometric data, and stellar population models, we statistically assess possible correlations between galaxy morphology and physical observables such as stellar mass, star formation rate, and the strength of galaxy-scale outflows. We find evidence that dustier galaxies have more nebulous UV morphologies and that larger, more luminous galaxies may drive stronger outflows, but we otherwise conclude that UV morphology is either statistically decoupled from the majority of physical observables or determined by too complex a combination of physical processes to provide characterizations with predictive power. Given the absence of strong correlations between UV morphology and physical parameters such as star formation rates, we are therefore unable to support the hypothesis that morphologically irregular galaxies predominantly represent major galaxy mergers. Comparing galaxy samples, we find that IR-selected BzK galaxies and radio-selected submillimeter galaxies have UV morphologies similar to the optically selected sample, while distant red galaxies are more nebulous.

[1]  Daniela Calzetti,et al.  Far-Infrared Galaxies in the Far-Ultraviolet , 2001, astro-ph/0112352.

[2]  Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 11/26/03 THE KINEMATICS OF MORPHOLOGICALLY SELECTED Z ∼ 2 GALAXIES IN THE GOODS-NORTH FIELD 1 , 2004 .

[3]  M. Giavalisco,et al.  The Great Observatories Origins Deep Survey: Initial results from optical and near-infrared imaging , 2003, astro-ph/0309105.

[4]  D. Calzetti,et al.  Spatially Resolved Ultraviolet, Hα, Infrared, and Radio Star Formation in M81 , 2004, astro-ph/0406064.

[5]  I. Smail,et al.  A Redshift Survey of the Submillimeter Galaxy Population , 2004, astro-ph/0412573.

[6]  University of Toronto,et al.  A New Approach to Galaxy Morphology. I. Analysis of the Sloan Digital Sky Survey Early Data Release , 2003, astro-ph/0301239.

[7]  Mark Dickinson The first galaxies: structure and stellar populations , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[9]  Hubble Space Telescope Images of Submillimeter Sources: Large Irregular Galaxies at High Redshift , 2003, astro-ph/0308197.

[10]  David R. Law,et al.  Predictions and Strategies for Integral-Field Spectroscopy of High-Redshift Galaxies , 2005, astro-ph/0509779.

[11]  Max Pettini,et al.  Optical Selection of Star-forming Galaxies at Redshifts 1 < z < 3 , 2004, astro-ph/0401445.

[12]  Christopher J. Conselice,et al.  The Relationship between Stellar Light Distributions of Galaxies and Their Formation Histories , 2003 .

[13]  M. Akiyama Host Galaxies of High-Redshift Active Galactic Nuclei in the Great Observatories Origins Deep Surveys Fields , 2005 .

[14]  S. M. Fall,et al.  The Morphological Diversities among Star-forming Galaxies at High Redshifts in the Great Observatories Origins Deep Survey , 2006, astro-ph/0606696.

[15]  Toru Yamada,et al.  When Did the Hubble Sequence Appear?: Morphology, Color, and Number-Density Evolution of the Galaxies in the Hubble Deep Field North , 2001, astro-ph/0105118.

[16]  Leiden,et al.  Distant Red Galaxies in the Hubble Ultra Deep Field , 2005, astro-ph/0503454.

[17]  M. Pettini,et al.  A Survey of Star-forming Galaxies in the 1.4 ≲ z ≲ 2.5 Redshift Desert: Overview , 2004, astro-ph/0401439.

[18]  Scott C. Chapman,et al.  Evidence for a Major Merger Origin of High-Redshift Submillimeter Galaxies , 2003, astro-ph/0308198.

[19]  S. Kent,et al.  CCD surface photometry of field galaxies. II: Bulge/disk decompositions , 1985 .

[20]  Casey Papovich,et al.  The Luminosity, Stellar Mass, and Number Density Evolution of Field Galaxies of Known Morphology from z = 0.5 to 3 , 2004, astro-ph/0405001.

[21]  T. Heckman,et al.  Far-Ultraviolet and X-Ray Observations of VV 114: Feedback in a Local Analog to Lyman Break Galaxies , 2006, astro-ph/0605241.

[22]  Optical and near-infrared spectroscopy of a high-redshift, hard x-ray emitting spiral galaxy , 2002, astro-ph/0212240.

[23]  Matthew A. Bershady,et al.  The asymmetry of galaxies: physical morphology for nearby and high redshift galaxies , 1999 .

[24]  Henry C. Ferguson,et al.  The Evolution of the Global Stellar Mass Density at 0 < z < 3 , 2002, astro-ph/0212242.

[25]  S. Ravindranath,et al.  AGN Host Galaxies at z ~ 0.4-1.3: Bulge-dominated and Lacking Merger-AGN Connection , 2005, astro-ph/0507091.

[26]  Max Pettini,et al.  A Spectroscopic Survey of Redshift 1.4 ≲ z ≲ 3.0 Galaxies in the GOODS-North Field: Survey Description, Catalogs, and Properties , 2006, astro-ph/0609296.

[27]  D. M. Alexander,et al.  The Chandra Deep Field North Survey. XIII. 2 Ms Point-Source Catalogs , 2003, astro-ph/0304392.

[28]  M. Giavalisco,et al.  Lyman Break Galaxies at Redshift z ~ 3: Survey Description and Full Data Set , 2003, astro-ph/0305378.

[29]  Henry C. Ferguson,et al.  The size evolution of high-redshift galaxies , 2004 .

[30]  Anna Jangren,et al.  STRUCTURAL AND PHOTOMETRIC CLASSIFICATION OF GALAXIES. I. CALIBRATION BASED ON A NEARBY GALAXY SAMPLE , 2000 .

[31]  Max Pettini,et al.  The Mass-Metallicity Relation at z≳2 , 2006, astro-ph/0602473.

[32]  C. Conselice,et al.  The Assembly of Diversity in the Morphologies and Stellar Populations of High-Redshift Galaxies , 2005, astro-ph/0501088.

[33]  C. Conselice,et al.  Accepted for Publication in the Astrophysical Journal THE INTERNAL ULTRAVIOLET–TO–OPTICAL COLOR DISPERSION: QUANTIFYING THE MORPHOLOGICAL K–CORRECTION , 2003 .

[34]  C. Leitherer,et al.  Spectral Modeling of Star-forming Regions in the Ultraviolet: Stellar Metallicity Diagnostics for High-Redshift Galaxies , 2004, astro-ph/0407296.

[35]  R. Abuter,et al.  SINFONI Integral Field Spectroscopy of z ~ 2 UV-selected Galaxies: Rotation Curves and Dynamical Evolution , 2006, astro-ph/0603559.

[36]  Casey Papovich,et al.  A Direct Measurement of Major Galaxy Mergers at z 3 , 2003 .

[37]  C. Steidel,et al.  The Connection between Galaxies and Intergalactic Absorption Lines at Redshift 2 ≲ z ≲ 3* , 2005, astro-ph/0505122.

[38]  P. P. van der Werf,et al.  A Significant Population of Red, Near-Infrared-selected High-Redshift Galaxies , 2003, astro-ph/0303163.

[39]  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[40]  Dario Fadda,et al.  Star Formation and Extinction in Redshift z~2 Galaxies: Inferences from Spitzer MIPS Observations , 2006, astro-ph/0602596.

[41]  C. Steidel,et al.  New Observations of the Interstellar Medium in the Lyman Break Galaxy MS 1512–cB58 , 2001, astro-ph/0110637.

[42]  Joel R. Primack,et al.  The Rest-Frame Far-Ultraviolet Morphologies of Star-Forming Galaxies at z ~ 1.5 and 4 , 2006 .

[43]  C. Steidel,et al.  The Stellar, Gas, and Dynamical Masses of Star-forming Galaxies at z ~ 2 , 2006, astro-ph/0604041.

[44]  N. R. Tanvir,et al.  Galaxy morphology to I = 25 mag in the Hubble Deep Field , 1996 .

[45]  P. Madau,et al.  A NEW NONPARAMETRIC APPROACH TO GALAXY MORPHOLOGICAL CLASSIFICATION , 2003, astro-ph/0311352.

[46]  Max Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[47]  A. Cimatti,et al.  A New Photometric Technique for the Joint Selection of Star-forming and Passive Galaxies at 1.4 <~ z <~ 2.5 , 2004, astro-ph/0409041.

[48]  V. Petrosian,et al.  Surface brightness and evolution of galaxies , 1976 .

[49]  C. Leitherer,et al.  The Stellar Content of Nearby Star-forming Galaxies. III. Unravelling the Nature of the Diffuse Ultraviolet Light , 2005, astro-ph/0505024.

[50]  M. Pettini,et al.  Rest-Frame Ultraviolet Spectra of z ∼ 3 Lyman Break Galaxies , 2003, astro-ph/0301230.