CENTORI: A global toroidal electromagnetic two-fluid plasma turbulence code

A new global two-fluid electromagnetic turbulence code, CENTORI, has been developed for the purpose of studying magnetically-confined fusion plasmas on energy confinement timescales. This code is used to evolve the combined system of electron and ion fluid equations and Maxwell equations in toroidal configurations with axisymmetric equilibria. Uniquely, the equilibrium is co-evolved with the turbulence, and is thus modified by it. CENTORI is applicable to tokamaks of arbitrary aspect ratio and high plasma beta. A predictor–corrector, semi-implicit finite difference scheme is used to compute the time evolution of fluid quantities and fields. Vector operations and the evaluation of flux surface averages are speeded up by choosing the Jacobian of the transformation from laboratory to plasma coordinates to be a function of the equilibrium poloidal magnetic flux. A subroutine, GRASS, is used to co-evolve the plasma equilibrium by computing the steady-state solutions of a diffusion equation with a pseudo-time derivative. The code is written in Fortran 95 and is efficiently parallelised using Message Passing Interface (MPI). Illustrative examples of output from simulations of a tearing mode in a large aspect ratio tokamak plasma and of turbulence in an elongated conventional aspect ratio tokamak plasma are provided.

[1]  F. Porté-Agel,et al.  Large-Eddy Simulation of the Stable Atmospheric Boundary Layer using Dynamic Models with Different Averaging Schemes , 2007 .

[2]  Scott Kruger,et al.  Modelling of ELM dynamics for DIII-D and ITER , 2007 .

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  F. Hinton,et al.  Effect of finite aspect ratio on the neoclassical ion thermal conductivity in the banana regime , 1982 .

[5]  N. Loureiro,et al.  Mesoscale plasma dynamics, transport barriers and zonal flows: simulations and paradigms , 2004 .

[6]  A. Thyagaraja,et al.  Numerical simulations of tokamak plasma turbulence and internal transport barriers , 2000 .

[7]  I. Chapman,et al.  The effects of sheared toroidal rotation on stability limits in tokamak plasmas , 2011 .

[8]  M. Valovič,et al.  Global two-fluid turbulence simulations of L-H transitions and edge localized mode dynamics in the COMPASS-D tokamak , 2010 .

[9]  Bill Scott,et al.  Tokamak turbulence computations on closed and open magnetic flux surfaces , 2005 .

[10]  S. Kruger,et al.  NIMROD: A computational laboratory for studying nonlinear fusion magnetohydrodynamics , 2003 .

[11]  C. Fletcher Computational techniques for fluid dynamics. Volume 1 - Fundamental and general techniques. Volume 2 - Specific techniques for different flow categories , 1988 .

[12]  Thomas David Edwards Optimising a fluid plasma turbulence simulation on modern high performance computers , 2010 .

[13]  C. Bourdelle,et al.  Global simulations of ion turbulence with magnetic shear reversal , 2001 .

[14]  Harold P. Furth,et al.  Finite‐Resistivity Instabilities of a Sheet Pinch , 1963 .

[16]  K. McClements,et al.  Excitation of axisymmetric Alfvénic modes in Ohmic tokamak discharges , 2002 .

[17]  Eliezer Hameiri,et al.  The equilibrium and stability of rotating plasmas , 1983 .

[18]  W. Horton,et al.  Toroidal drift modes driven by ion pressure gradients , 1981 .

[19]  C. Bourdelle,et al.  Numerical study of linear dissipative drift electrostatic modes in tokamaks , 2007 .

[20]  L. Spitzer Equations of Motion for an Ideal Plasma. , 1952 .

[21]  K. McClements,et al.  Toroidal and poloidal flows in single-fluid and two-fluid tokamak equilibria , 2006 .

[22]  F. J. Casson,et al.  The nonlinear gyro-kinetic flux tube code GKW , 2009, Comput. Phys. Commun..

[23]  A. Ware,et al.  Pinch Effect for Trapped Particles in a Tokamak , 1970 .

[24]  Pierre Ramet,et al.  Non-linear MHD simulations of edge localized modes (ELMs) , 2009 .

[25]  Numerical assessment of ion turbulent thermal transport scaling laws , 2001 .

[26]  H. Sugama Gyrokinetic field theory , 2000 .

[27]  Steven J. Plimpton,et al.  The NIMROD code: a new approach to numerical plasma physics , 1999 .

[28]  Effects of a nonuniform equilibrium electric field on ion temperature gradient instabilities , 1990 .

[29]  Clive A. J. Fletcher,et al.  Computational Techniques for Fluid Dynamics 1: Fundamental and General Techniques , 1996 .

[30]  A. Thyagaraja Is the Hartmann number relevant to tokamak physics , 1994 .

[31]  P. B. Snyder,et al.  BOUT++: A framework for parallel plasma fluid simulations , 2008, Comput. Phys. Commun..

[32]  K. McClements,et al.  Axisymmetric two-fluid plasma equilibria with momentum sources and sinks , 2011 .

[33]  N. Holtkamp,et al.  An overview of the ITER project , 2007 .

[34]  M. Rosenbluth,et al.  Electron heat transport in a tokamak with destroyed magnetic surfaces , 1978 .