CLASSICAL LIMIT OF QUANTUM DYNAMICAL ENTROPIES

Two non-commutative dynamical entropies are studied in connection with the classical limit. For systems with a strongly chaotic classical limit, the Kolmogorov–Sinai invariant is recovered on time scales that are logarithmic in the quantization parameter. The model of the quantized hyperbolic automorphisms of the 2-torus is examined in detail.

[1]  V. Cappellini,et al.  Quantum dynamical entropies in discrete classical chaos , 2003, math-ph/0308033.

[2]  J. Bruer The classical limit of quantum theory , 1982, Synthese.

[3]  S. Neshveyev On the K-property of quantized Arnold cat maps , 2000, math/0002080.

[4]  J. Zukas Introduction to the Modern Theory of Dynamical Systems , 1998 .

[5]  M. Ohya,et al.  Dynamical Entropy Through Quantum Markov Chains , 1997 .

[6]  R. MacKay INTRODUCTION TO THE MODERN THEORY OF DYNAMICAL SYSTEMS (Encyclopaedia of Mathematics and its Applications 54) , 1997 .

[7]  Miklaszewski,et al.  Quantum Chaos in Terms of Entropy for Periodically Kicked Top. , 1996, Physical review letters.

[8]  P. Tuyls,et al.  An Algebraic Approach to the Kolmogorov-Sinai Entropy , 1996 .

[9]  E. Størmer,et al.  C*-dynamical systems for which the tensor product formula for entropy fails , 1995, Ergodic Theory and Dynamical Systems.

[10]  Dan Voiculescu,et al.  Dynamical approximation entropies and topological entropy in operator algebras , 1995 .

[11]  R. Werner The classical limit of quantum theory , 1995, quant-ph/9504016.

[12]  Robert Alicki,et al.  Comparison of dynamical entropies for the noncommutative shifts , 1995 .

[13]  Giulio Casati,et al.  Quantum chaos : between order and disorder , 1995 .

[14]  Karol Życzkowski,et al.  Quantum chaos: An entropy approach , 1994 .

[15]  Mark Fannes,et al.  Defining quantum dynamical entropy , 1994 .

[16]  M. Esposti Quantization of the orientation preserving automorphisms of the torus , 1993 .

[17]  D. Petz,et al.  Quantum Entropy and Its Use , 1993 .

[18]  J. Ford,et al.  Does quantum mechanics obey the correspondence principle? Is it complete? , 1992 .

[19]  Eigenfunctions, eigenvalues, and time evolution of finite, bounded, undriven, quantum systems are not chaotic. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[20]  H. Narnhofer Quantized Arnold cat maps can be entropic K‐systems , 1992 .

[21]  M. Fannes,et al.  Finitely correlated states on quantum spin chains , 1992 .

[22]  Joseph Ford,et al.  The Arnol'd cat: failure of the correspondence principle , 1991 .

[23]  F. Benatti,et al.  A non-commutative version of the Arnold cat map , 1991 .

[24]  D. Voiculescu,et al.  Entropy of Bogoliubov automorphisms of the canonical anticommutation relations , 1990 .

[25]  P. Walters Ergodic Theory and Differentiable Dynamics By Ricardo Mañé: Translated from the Portuguese by Silvio Levy. Ergebnisse de Mathematik und ihrer Grenzgebiete, 3 Folge-Band 8. Springer-Verlag 1987. , 1989, Ergodic Theory and Dynamical Systems.

[26]  A. Connes,et al.  Dynamical entropy ofC* algebras and von Neumann algebras , 1987 .

[27]  R. Mañé,et al.  Ergodic Theory and Differentiable Dynamics , 1986 .

[28]  R Hide,et al.  Chaos in Dynamic Systems , 1986 .

[29]  D. Newton AN INTRODUCTION TO ERGODIC THEORY (Graduate Texts in Mathematics, 79) , 1982 .

[30]  P. Walters Introduction to Ergodic Theory , 1977 .

[31]  M. Fannes A continuity property of the entropy density for spin lattice systems , 1973 .

[32]  V. I. Arnolʹd,et al.  Ergodic problems of classical mechanics , 1968 .

[33]  S. Lawomir,et al.  Quantum Maps , 2022 .