The sypA, sypS, and sypC synthetase genes encode twenty-two modules involved in the nonribosomal peptide synthesis of syringopeptin by Pseudomonas syringae pv. syringae B301D.

Syringopeptin is a necrosis-inducing phytotoxin, composed of 22 amino acids attached to a 3-hydroxy fatty acid tail. Syringopeptin, produced by Pseudomonas syringae pv. syringae, functions as a virulence determinant in the plant-pathogen interaction. A 73,800-bp DNA region was sequenced, and analysis identified three large open reading frames, sypA, sypB, and sypC, that are 16.1, 16.3, and 40.6 kb in size. Sequence analysis of the putative SypA, SypB, and SypC sequences determined that they are homologous to peptide synthetases, containing five, five, and twelve amino acid activation modules, respectively. Each module exhibited characteristic domains for condensation, aminoacyl adenylation, and thiolation. Within the aminoacyl adenylation domain is a region responsible for substrate specificity. Phylogenetic analysis of the substrate-binding pockets resulted in clustering of the 22 syringopeptin modules into nine groups. This clustering reflects the substrate amino acids predicted to be recognized by each of the respective modules based on placement of the syringopeptin NRPS (nonribosomal peptide synthetase) system in the linear (type A) group. Finally, SypC contains two C-terminal thioesterase domains predicted to catalyze the release of syringopeptin from the synthetase and peptide cyclization to form the lactone ring. The syringopeptin synthetases, which carry 22 NRPS modules, represent the largest linear NRPS system described for a prokaryote.

[1]  F. Grimont,et al.  DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. (ex Sutic and Dowson 1959). , 1999, International journal of systematic bacteriology.

[2]  F. Mariotti,et al.  Biosynthetic origin of syringomycin and syringopeptin 22, toxic secondary metabolites of the phytopathogenic bacterium Pseudomonas syringae pv. syringae 1 , 1999, FEBS letters.

[3]  J. Vater,et al.  Structural and functional organization of the surfactin synthetase multienzyme system. , 1993, The Journal of biological chemistry.

[4]  D. Gross,et al.  Analysis of the syrB and syrC genes of Pseudomonas syringae pv. syringae indicates that syringomycin is synthesized by a thiotemplate mechanism , 1995, Journal of bacteriology.

[5]  M. Marahiel,et al.  Crystal structure of DhbE, an archetype for aryl acid activating domains of modular nonribosomal peptide synthetases , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[6]  G. Weber,et al.  The peptide synthetase catalyzing cyclosporine production in Tolypocladium niveum is encoded by a giant 45.8-kilobase open reading frame , 1994, Current Genetics.

[7]  M. Marahiel,et al.  Structural basis for the cyclization of the lipopeptide antibiotic surfactin by the thioesterase domain SrfTE. , 2002, Structure.

[8]  M. Marahiel,et al.  Ways of Assembling Complex Natural Products on Modular Nonribosomal Peptide Synthetases , 2002, Chembiochem : a European journal of chemical biology.

[9]  M. Simmaco,et al.  Phytotoxic properties of Pseudomonas syringae pv. syringae toxins , 1992 .

[10]  P. Marlière,et al.  Multienzymatic non ribosomal peptide biosynthesis: identification of the functional domains catalysing peptide elongation and epimerisation. , 1995, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.

[11]  A. Ballio,et al.  The interaction of lipodepsipeptide toxins from Pseudomonas syringae pv. syringae with biological and model membranes: a comparison of syringotoxin, syringomycin, and two syringopeptins. , 1999, Molecular plant-microbe interactions : MPMI.

[12]  M. Marahiel,et al.  The tyrocidine biosynthesis operon of Bacillus brevis: complete nucleotide sequence and biochemical characterization of functional internal adenylation domains , 1997, Journal of bacteriology.

[13]  P. Gurnev,et al.  Membrane-permeabilizing activities of cyclic lipodepsipeptides, syringopeptin 22A and syringomycin E from Pseudomonas syringae pv. syringae in human red blood cells and in bilayer lipid membranes. , 2000, Bioelectrochemistry.

[14]  P. R. Sibbald,et al.  The P-loop--a common motif in ATP- and GTP-binding proteins. , 1990, Trends in biochemical sciences.

[15]  M. Marahiel Protein templates for the biosynthesis of peptide antibiotics. , 1997, Chemistry & biology.

[16]  M. Marahiel,et al.  Peptide cyclization catalysed by the thioesterase domain of tyrocidine synthetase , 2000, Nature.

[17]  D. Gross,et al.  Lipopeptide phytotoxins produced by Pseudomonas syringae pv. syringae: comparison of the biosurfactant and ion channel-forming activities of syringopeptin and syringomycin. , 1997, Molecular plant-microbe interactions : MPMI.

[18]  T. Merriman,et al.  Nucleotide sequence of pvdD, a pyoverdine biosynthetic gene from Pseudomonas aeruginosa: PvdD has similarity to peptide synthetases , 1995, Journal of bacteriology.

[19]  M. Marahiel,et al.  Analysis of core sequences in the D-Phe activating domain of the multifunctional peptide synthetase TycA by site-directed mutagenesis , 1994, Journal of bacteriology.

[20]  Roderic D. M. Page,et al.  TreeView: an application to display phylogenetic trees on personal computers , 1996, Comput. Appl. Biosci..

[21]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[22]  Y. Yamamoto,et al.  Molecular cloning and nucleotide sequence of the gramicidin S synthetase 1 gene. , 1989, Journal of biochemistry.

[23]  T. Stachelhaus,et al.  Peptide Bond Formation in Nonribosomal Peptide Biosynthesis , 1998, The Journal of Biological Chemistry.

[24]  G. Grandi,et al.  Characterization of the Syringomycin Synthetase Gene Cluster , 1998, The Journal of Biological Chemistry.

[25]  D. Sinderen,et al.  Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis , 1993, Molecular microbiology.

[26]  T. Stachelhaus,et al.  Modular Structure of Peptide Synthetases Revealed by Dissection of the Multifunctional Enzyme GrsA (*) , 1995, The Journal of Biological Chemistry.

[27]  M. Marahiel,et al.  An active serine is involved in covalent substrate amino acid binding at each reaction center of gramicidin S synthetase. , 1991, The Journal of biological chemistry.

[28]  C. Yanisch-Perron,et al.  Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. , 1985, Gene.

[29]  G. Grandi,et al.  Engineering of Peptide Synthetases , 1997, The Journal of Biological Chemistry.

[30]  P. Brick,et al.  Structural basis for the activation of phenylalanine in the non‐ribosomal biosynthesis of gramicidin S , 1997, The EMBO journal.

[31]  M. Marahiel,et al.  Dipeptide formation on engineered hybrid peptide synthetases. , 2000, Chemistry & biology.

[32]  M. Marahiel,et al.  Construction of hybrid peptide synthetases by module and domain fusions. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[33]  G. Challis,et al.  Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. , 2000, Chemistry & biology.

[34]  D. Hopwood,et al.  Nucleotide sequence and deduced functions of a set of cotranscribed genes of Streptomyces coelicolor A3(2) including the polyketide synthase for the antibiotic actinorhodin. , 1992, The Journal of biological chemistry.

[35]  G. Del Sal,et al.  The CTAB-DNA precipitation method: a common mini-scale preparation of template DNA from phagemids, phages or plasmids suitable for sequencing. , 1989, BioTechniques.

[36]  J. Soule,et al.  A physical map of the syringomycin and syringopeptin gene clusters localized to an approximately 145-kb DNA region of Pseudomonas syringae pv. syringae strain B301D. , 2001, Molecular plant-microbe interactions : MPMI.

[37]  Shi-En Lu,et al.  Characterization of the salA, syrF, and syrG regulatory genes located at the right border of the syringomycin gene cluster of Pseudomonas syringae pv. syringae. , 2002, Molecular plant-microbe interactions : MPMI.

[38]  M. Marahiel,et al.  Four homologous domains in the primary structure of GrsB are related to domains in a superfamily of adenylate‐forming enzymes , 1992, Molecular microbiology.

[39]  F. Bossa,et al.  Syringopeptins, new phytotoxic lipodepsipeptides of Pseudomonas syringae pv. syringae , 1991, FEBS letters.

[40]  T. Stachelhaus,et al.  The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. , 1999, Chemistry & biology.

[41]  Exploring the impact of different thioesterase domains for the design of hybrid peptide synthetases. , 2001, Chemistry & biology.

[42]  M. Marahiel,et al.  Gramicidin S biosynthesis operon containing the structural genes grsA and grsB has an open reading frame encoding a protein homologous to fatty acid thioesterases , 1989, Journal of bacteriology.

[43]  M. Marahiel,et al.  Genetic evidence for a role of thioesterase domains, integrated in or associated with peptide synthetases, in non-ribosomal peptide biosynthesis in Bacillus subtilis , 1998, Archives of Microbiology.

[44]  M. Marahiel,et al.  Gene cluster containing the genes for tyrocidine synthetases 1 and 2 from Bacillus brevis: evidence for an operon , 1989, Journal of bacteriology.

[45]  Y. Mo,et al.  Expression in vitro and during plant pathogenesis of the syrB gene required for syringomycin production by Pseudomonas syringae pv. syringae , 1991 .

[46]  Mohamed A. Marahiel,et al.  Modular Peptide Synthetases Involved in Nonribosomal Peptide Synthesis. , 1997, Chemical reviews.

[47]  T. Stein,et al.  Amino acid activation and polymerization at modular multienzymes in nonribosomal peptide biosynthesis , 1996, Amino Acids.

[48]  M. Simmaco,et al.  Biological properties and spectrum of activity ofPseudomonas syringaepv.syringaetoxins , 1997 .

[49]  M. Marahiel,et al.  Molecular and Biochemical Characterization of the Protein Template Controlling Biosynthesis of the Lipopeptide Lichenysin , 1999, Journal of bacteriology.

[50]  D. Gross,et al.  Syringomycin production among strains of Pseudomonas syringae pv. syringae: conservation of the syrB and syrD genes and activation of phytotoxin production by plant signal molecules. , 1994, Molecular plant-microbe interactions : MPMI.

[51]  A. Scaloni,et al.  Solution conformation of the Pseudomonas syringae pv. syringae phytotoxic lipodepsipeptide syringopeptin 25-A. Two-dimensional NMR, distance geometry and molecular dynamics. , 1995, European journal of biochemistry.

[52]  M. Marahiel,et al.  4′-Phosphopantetheine Transfer in Primary and Secondary Metabolism of Bacillus subtilis * , 2001, The Journal of Biological Chemistry.

[53]  J. Devereux,et al.  A comprehensive set of sequence analysis programs for the VAX , 1984, Nucleic Acids Res..

[54]  J. Hacker,et al.  Pathogenicity islands and the evolution of microbes. , 2000, Annual review of microbiology.

[55]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[56]  J. Walton,et al.  The cyclic peptide synthetase catalyzing HC-toxin production in the filamentous fungus Cochliobolus carbonum is encoded by a 15.7-kilobase open reading frame. , 1992, The Journal of biological chemistry.

[57]  C. Napoli,et al.  Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea , 1987, Journal of bacteriology.

[58]  D. Gross,et al.  The contribution of syringopeptin and syringomycin to virulence of Pseudomonas syringae pv. syringae strain B301D on the basis of sypA and syrB1 biosynthesis mutant analysis. , 2001, Molecular plant-microbe interactions : MPMI.