Multifractional theories: an unconventional review

A bstractWe answer to 72 frequently asked questions about theories of multifractional spacetimes. Apart from reviewing and reorganizing what we already know about such theories, we discuss the physical meaning and consequences of the very recent flow-equation theorem on dimensional flow in quantum gravity, in particular its enormous impact on the multifractional paradigm. We will also get new theoretical results about the construction of multifractional derivatives and the symmetries in the yet-unexplored theory Tγ , the resolution of ambiguities in the calculation of the spectral dimension, the relation between the theory Tq with q-derivatives and the theory Tγ with fractional derivatives, the interpretation of complex dimensions in quantum gravity, the frame choice at the quantum level, the physical interpretation of the propagator in Tγ as an infinite superposition of quasiparticle modes, the relation between multifractional theories and quantum gravity, and the issue of renormalization, arguing that power-counting arguments do not capture the exotic properties of extreme UV regimes of multifractional geometry, where Tγ may indeed be renormalizable. A careful discussion of experimental bounds and new constraints are also presented.

[1]  Generalized Lorentz invariance with an invariant energy scale , 2002, gr-qc/0207085.

[2]  E. Martinec Nonrenormalization theorems and fermionic string finiteness , 1986 .

[3]  Astrid Eichhorn,et al.  Spectral dimension in causal set quantum gravity , 2013, 1311.2530.

[4]  J. Jurkiewicz,et al.  Nonperturbative quantum gravity , 2012, 1203.3591.

[5]  J. Polchinski Comment on ‘Small Lorentz violations in quantum gravity: do they lead to unacceptably large effects?’ , 2011, 1106.6346.

[6]  Zeilinger,et al.  Measuring the dimension of space time. , 1985, Physical review letters.

[7]  J. Polchinski String Theory: Preface , 1998 .

[8]  J. Wess,et al.  Noncommutative Spacetimes: Symmetries in Noncommutative Geometry and Field Theory , 2009 .

[9]  Leonardo Modesto,et al.  Super-renormalizable Quantum Gravity , 2011, 1107.2403.

[10]  I M Sokolov,et al.  Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  G. Calcagni,et al.  Proposal for field M-theory , 2014 .

[12]  Noncommutative geometry and the standard model with neutrino mixing , 2006, hep-th/0608226.

[13]  E. Akkermans,et al.  Thermodynamics of photons on fractals. , 2010, Physical review letters.

[14]  G. Calcagni,et al.  Particle-physics constraints on multifractal spacetimes , 2015, 1512.02621.

[15]  P. Jizba,et al.  The emergence of Special and Doubly Special Relativity , 2011, 1105.3930.

[16]  K. Stelle Renormalization of Higher Derivative Quantum Gravity , 1977 .

[17]  Didier Sornette,et al.  Punctuated vortex coalescence and discrete scale invariance in two-dimensional turbulence , 1999, cond-mat/9902247.

[18]  F. Adda Mathematical model for fractal manifold , 2007, 0711.3582.

[19]  R. Loll,et al.  The emergence of spacetime or quantum gravity on your desktop , 2007, 0711.0273.

[20]  Carl F. Lorenzo,et al.  Variable Order and Distributed Order Fractional Operators , 2002 .

[21]  Michel L. Lapidus,et al.  Fractal Geometry, Complex Dimensions and Zeta Functions , 2006 .

[22]  Christoph Rahmede,et al.  Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation , 2008, 0805.2909.

[23]  Renormalisation of phi4-theory on noncommutative Bbb R2 in the matrix base , 2003, hep-th/0307017.

[24]  Thordur Jonsson,et al.  THE SPECTRAL DIMENSION OF THE BRANCHED POLYMER PHASE OF TWO-DIMENSIONAL QUANTUM GRAVITY , 1998 .

[25]  G. Calcagni Geometry of fractional spaces , 2011, 1106.5787.

[26]  M. Reuter,et al.  Fractal spacetime structure in asymptotically safe gravity , 2005 .

[27]  S. Steinhaus,et al.  Investigation of the spinfoam path integral with quantum cuboid intertwiners , 2015, 1508.07961.

[28]  Y. M. Cho,et al.  Quantum violation of the equivalence principle in Brans - Dicke theory , 1997 .

[29]  K. Stelle Classical gravity with higher derivatives , 1978 .

[30]  F. Pretorius,et al.  Theoretical Physics Implications of the Binary Black-Hole Merger GW150914 , 2016 .

[31]  Gravity and the standard model with neutrino mixing , 2006, hep-th/0610241.

[32]  Alain Connes,et al.  Noncommutative geometry , 1994 .

[33]  Carlo Rovelli Quantum gravity , 2008, Scholarpedia.

[34]  A. Mazumdar,et al.  Towards a resolution of the cosmological singularity in non-local higher derivative theories of gravity , 2010, 1005.0590.

[35]  Riccardo Martini,et al.  Functional Renormalisation Group analysis of Tensorial Group Field Theories on $\mathbb{R}^d$ , 2016, 1601.08211.

[36]  Gianluca Calcagni,et al.  Geometry and field theory in multi-fractional spacetime , 2011, 1107.5041.

[37]  J. Jurkiewicz,et al.  Spectral dimension of the universe , 2005, hep-th/0505113.

[38]  H. Verlinde,et al.  Multiloop calculations in covariant superstring theory , 1987 .

[39]  G. Amelino-Camelia Relativity: Special treatment , 2002, Nature.

[40]  D. Oriti,et al.  Quantum cosmology from quantum gravity condensates: cosmological variables and lattice-refined dynamics , 2014, 1407.8167.

[41]  Remarks on the Notions of General Covariance and Background Independence , 2006, gr-qc/0603087.

[42]  Alejandro Perez,et al.  The Spin-Foam Approach to Quantum Gravity , 2012, Living reviews in relativity.

[43]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[44]  Fay Dowker,et al.  Introduction to causal sets and their phenomenology , 2013 .

[45]  G. Calcagni,et al.  Standard Model in multiscale theories and observational constraints , 2015, 1512.06858.

[46]  A. Kostelecký,et al.  Electrodynamics with Lorentz-violating operators of arbitrary dimension , 2009, 0905.0031.

[47]  C. Rovelli A new look at loop quantum gravity , 2010, 1004.1780.

[48]  G. Calcagni,et al.  Quantum field theory with varying couplings , 2013, 1306.0629.

[49]  Alejandro Perez,et al.  Spin Foam Models for Quantum Gravity , 2003, gr-qc/0301113.

[50]  Sidney Coleman,et al.  High-energy tests of Lorentz invariance , 1999 .

[51]  Georgios Giasemidis,et al.  Multigraph models for causal quantum gravity and scale dependent spectral dimension , 2012, 1202.6322.

[52]  B. Holstein,et al.  Low energy theorems of quantum gravity from effective field theory , 2015, 1506.00946.

[53]  D L Gilden,et al.  1/f noise in human cognition. , 1995, Science.

[54]  S. Carlip,et al.  Lower bound on the spectral dimension near a black hole , 2011, 1108.4686.

[55]  D. Sornette Discrete scale invariance and complex dimensions , 1997, cond-mat/9707012.

[56]  G. Calcagni,et al.  What gravity waves are telling about quantum spacetime , 2016, 1604.00541.

[57]  Zu-Guo Yu,et al.  FRACTIONAL INTEGRAL ASSOCIATED TO THE SELF-SIMILAR SET OR THE GENERALIZED SELF-SIMILAR SET AND ITS PHYSICAL INTERPRETATION , 1996 .

[58]  G. Calcagni Quantum field theory, gravity and cosmology in a fractal universe , 2010, 1001.0571.

[59]  G. Calcagni Relativistic particle in multiscale spacetimes , 2013, 1306.5965.

[60]  V. Rivasseau,et al.  Renormalization of a SU(2) Tensorial Group Field Theory in Three Dimensions , 2014, Communications in Mathematical Physics.

[61]  A. Schafer,et al.  Bounds for the fractal dimension of space , 1986 .

[62]  J. Atteia,et al.  Study of Time Lags in HETE-2 Gamma-Ray Bursts with Redshift: Search for Astrophysical Effects and a Quantum Gravity Signature , 2006, astro-ph/0603725.

[63]  S. Krantz Fractal geometry , 1989 .

[64]  Anonymous,et al.  Erratum: Tests of General Relativity with GW150914 [Phys. Rev. Lett. 116, 221101 (2016)]. , 2018, Physical review letters.

[65]  F. Caravelli,et al.  1 3 M ay 2 00 9 Fractal Dimension in 3 d Spin-Foams , 2009 .

[66]  F. Piazza,et al.  Scalar-tensor theories, trace anomalies, and the QCD frame , 2012, 1202.2105.

[67]  G. Calcagni Lorentz violations in multifractal spacetimes , 2016, 1603.03046.

[68]  Anatoly N. Kochubei,et al.  Distributed-order calculus: An operator-theoretic interpretation , 2007, 0710.1710.

[69]  C. Cookson The Asymptotic Safety Scenario In Quantum Gravity , 2015 .

[70]  G. Hooft Dimensional Reduction in Quantum Gravity , 1993, gr-qc/9310026.

[71]  Petr Hořava Quantum Gravity at a Lifshitz Point , 2009, 0901.3775.

[72]  Barton Zwiebach,et al.  A first course in string theory , 2004 .

[73]  Jacob D. Bekenstein,et al.  Fine Structure Constant: Is It Really a Constant? , 1982 .

[74]  G. Calcagni,et al.  Dimensional flow and fuzziness in quantum gravity: emergence of stochastic spacetime , 2017, 1706.02159.

[75]  J. Magnen,et al.  Commutative limit of a renormalizable noncommutative model , 2008, 0807.4093.

[76]  G. Calcagni,et al.  Anomaly-free cosmological perturbations in effective canonical quantum gravity , 2014, 1404.1018.

[77]  Covariant and locally Lorentz-invariant varying speed of light theories , 2000, gr-qc/0007036.

[78]  S. Zohren,et al.  Dynamical dimensional reduction in toy models of 4D causal quantum gravity , 2012, 1202.2710.

[79]  G. Calcagni,et al.  Deformed symmetries in noncommutative and multifractional spacetimes , 2016, 1608.01667.

[80]  D Huet,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .

[81]  The Ligo Scientific Collaboration,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016, 1606.04855.

[82]  G. Calcagni,et al.  Momentum transforms and Laplacians in fractional spaces , 2012, 1202.5383.

[83]  Introduction to multifractional spacetimes , 2012, 1209.1110.

[84]  G. Calcagni,et al.  Varying electric charge in multiscale spacetimes , 2013, 1305.3497.

[85]  Anatoly N. Kochubei,et al.  Distributed order calculus and equations of ultraslow diffusion , 2008 .

[86]  Pseudo)issue of the conformal frame revisited , 2006, gr-qc/0612075.

[87]  V. Rivasseau,et al.  A Translation-Invariant Renormalizable Non-Commutative Scalar Model , 2008, 0802.0791.

[88]  L. Sindoni,et al.  Cosmology from group field theory formalism for quantum gravity. , 2013, Physical review letters.

[89]  Bergfinnur Durhuus,et al.  The Spectral Dimension of Generic Trees , 2006, math-ph/0607020.

[90]  J. Jurkiewicz,et al.  Scaling in four-dimensional quantum gravity , 1995, hep-th/9503006.

[91]  J. Jurkiewicz,et al.  The spectral dimension of the universe is scale dependent. , 2005, Physical review letters.

[92]  J. Magueijo Bimetric varying speed of light theories and primordial fluctuations , 2008, 0807.1689.

[93]  L. Modesto,et al.  Super-renormalizable and finite gravitational theories , 2014, 1407.8036.

[94]  M. Reuter,et al.  Asymptotic Safety, Fractals, and Cosmology , 2012, 1205.5431.

[95]  Dario Benedetti,et al.  Fractal properties of quantum spacetime. , 2008, Physical review letters.

[96]  Spectral zeta functions of fractals and the complex dynamics of polynomials , 2005, math/0505546.

[97]  G. Amelino-Camelia DOUBLY-SPECIAL RELATIVITY: FIRST RESULTS AND KEY OPEN PROBLEMS , 2002, gr-qc/0210063.

[98]  Riccardo Martini,et al.  Functional Renormalisation Group analysis of a Tensorial Group Field Theory on R 3 , 2015 .

[99]  Joe Henson,et al.  Spectral geometry as a probe of quantum spacetime , 2009, 0911.0401.

[100]  J. Pullin,et al.  Small Lorentz violations in quantum gravity: do they lead to unacceptably large effects? , 2011, 1106.1417.

[101]  G. Calcagni ABC of multi-fractal spacetimes and fractional sea turtles , 2016, The European Physical Journal C.

[102]  G. Amelino-Camelia,et al.  Spacetime-noncommutativity regime of Loop Quantum Gravity , 2016, 1605.00497.

[103]  B. Altschul Finite duration and energy effects in Lorentz-violating vacuum Cerenkov radiation , 2007, 0709.4478.

[104]  TOPICAL REVIEW: The asymptotic safety scenario in quantum gravity: an introduction , 2006, gr-qc/0610018.

[105]  G. Calcagni Multi-scale gravity and cosmology , 2013, 1307.6382.

[106]  G. Calcagni,et al.  Spectral dimension of quantum geometries , 2013, 1311.3340.

[107]  F. Pretorius,et al.  Theoretical Physics Implications of the Binary Black-Hole Mergers GW150914 and GW151226 , 2016, 1603.08955.

[108]  Gianluca Calcagni,et al.  Probing the quantum nature of spacetime by diffusion , 2013, 1304.7247.

[109]  Sumati Surya,et al.  Directions in Causal Set Quantum Gravity , 2011, 1103.6272.

[110]  L. Modesto Super-renormalizable Multidimensional Quantum Gravity , 2012, 1202.3151.

[111]  Petr Hořava Spectral dimension of the universe in quantum gravity at a lifshitz point. , 2009, Physical review letters.

[112]  G. Calcagni,et al.  Symmetries and propagator in multifractional scalar field theory , 2012, 1210.2754.

[113]  Jin-Rong Liang,et al.  Integrals and derivatives on net fractals , 2003 .

[114]  D. Al,et al.  Detection of a Cosmic Ray with Measured Energy Well Beyond the Expected Spectral Cutoff due to Cosmic Microwave Radiation , 1994 .

[115]  G. Calcagni,et al.  Quantum mechanics in fractional and other anomalous spacetimes , 2012, 1207.4473.

[116]  A.Coleman,et al.  SEARCHES FOR LARGE-SCALE ANISOTROPY IN THE ARRIVAL DIRECTIONS OF COSMIC RAYS DETECTED ABOVE ENERGY OF 1019 eV AT THE PIERRE AUGER OBSERVATORY AND THE TELESCOPE ARRAY , 2014, 1409.3128.

[117]  John Linsley,et al.  Evidence for a primary cosmic-ray particle with energy 10**20-eV , 1963 .

[118]  J. B. Geloun Two- and four-loop β-functions of rank-4 renormalizable tensor field theories , 2012, 1205.5513.

[119]  G. Calcagni Discrete to continuum transition in multifractal spacetimes , 2011, 1106.0295.

[120]  R. Dicke Mach's Principle and Invariance under Transformation of Units , 1962 .

[121]  J. Wheater,et al.  Continuum random combs and scale-dependent spectral dimension , 2011, 1101.4174.

[122]  B. Müller,et al.  Improved bounds on the dimension of space-time. , 1986, Physical Review Letters.

[123]  G. A. Camelia Testable scenario for relativity with minimum - length , 2001 .

[124]  M. Lapidus,et al.  Fractal Geometry and Number Theory: Complex Dimensions of Fractal Strings and Zeros of Zeta Functions , 2005 .

[125]  Sylvain Carrozza,et al.  Renormalization of Tensorial Group Field Theories: Abelian U(1) Models in Four Dimensions , 2012, 1207.6734.

[126]  Conformal transformations in classical gravitational theories and in cosmology , 1998, gr-qc/9811047.

[127]  Jure Zupan,et al.  Higgs after the discovery: a status report , 2012, 1207.1718.

[128]  D. Anselmi,et al.  Vacuum Cherenkov radiation in quantum electrodynamics with high-energy Lorentz violation , 2011, 1101.2019.

[129]  Test of special relativity from K physics , 1997, hep-ph/9709350.

[130]  Piero Nicolini,et al.  Spectral dimension of a quantum universe , 2009, 0912.0220.

[131]  D Huet,et al.  Tests of General Relativity with GW150914. , 2016, Physical review letters.

[132]  Daniele Oriti Spacetime geometry from algebra: spin foam models for non-perturbative quantum gravity , 2001 .

[133]  Matt Visser,et al.  Spectral dimension as a probe of the ultraviolet continuum regime of causal dynamical triangulations. , 2011, Physical review letters.

[134]  M. Bojowald,et al.  Hypersurface-deformation algebroids and effective spacetime models , 2016, 1610.08355.

[135]  M. Arzano,et al.  Diffusion on \kappa -Minkowski space , 2014, 1404.4762.

[136]  J. Jurkiewicz,et al.  Evidence for asymptotic safety from dimensional reduction in causal dynamical triangulations , 2014, 1411.7712.

[137]  G. Calcagni,et al.  Dimensional flow in discrete quantum geometries , 2014, 1412.8390.

[138]  Daniel Sudarsky,et al.  Lorentz invariance and quantum gravity: an additional fine-tuning problem? , 2004, Physical review letters.

[139]  Laurent Nottale,et al.  Scale-relativity and quantization of the universe I. Theoretical framework , 1997 .

[140]  A. Ashtekar,et al.  Quantum gravity extension of the inflationary scenario. , 2012, Physical review letters.

[141]  Riccardo Martini,et al.  Functional Renormalization Group analysis of a Tensorial Group Field Theory on , 2015, 1508.01855.

[142]  J. Ellis,et al.  Comments on Graviton Propagation in Light of GW150914 , 2016, 1602.04764.

[143]  G. Amelino-Camelia Relativity in space-times with short distance structure governed by an observer independent (Planckian) length scale , 2000, gr-qc/0012051.

[144]  Michael B. Green,et al.  Infinity Cancellations in SO(32) Superstring Theory , 1985 .

[145]  Superrenormalizable gauge and gravitational theories , 1997, hep-th/9702146.

[146]  A. Mazumdar,et al.  Towards understanding the ultraviolet behavior of quantum loops in infinite-derivative theories of gravity , 2014, 1412.3467.

[147]  Physical consequences of complex dimensions of fractals , 2009, 0903.3681.

[148]  S. Carlip Spontaneous Dimensional Reduction in Short‐Distance Quantum Gravity? , 2009, 0909.3329.

[149]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[150]  G. Calcagni,et al.  Quantum spectral dimension in quantum field theory , 2014, 1408.0199.

[151]  G. Hooft,et al.  One loop divergencies in the theory of gravitation , 1974 .

[152]  Reconstructing the universe , 2005, hep-th/0505154.

[153]  Laura Castell'o Gomar,et al.  Quantum corrections to the Mukhanov-Sasaki equations , 2016, 1603.08448.

[154]  T. Thiemann Modern Canonical Quantum General Relativity , 2007 .

[155]  G. Calcagni,et al.  Nonlocality in string theory , 2013, 1310.4957.

[156]  E. D'hoker,et al.  Two-loop vacuum energy for Calabi–Yau orbifold models ☆ , 2013, 1307.1749.

[157]  G. Calcagni,et al.  Spectral dimension and diffusion in multiscale spacetimes , 2013, 1304.2709.

[158]  F. David What is the intrinsic geometry of two-dimensional quantum gravity? , 1992 .

[159]  G. Calcagni Fractal universe and quantum gravity. , 2009, Physical review letters.

[160]  J. Magueijo,et al.  Dimensional reduction in momentum space and scale-invariant cosmological fluctuations , 2013 .

[161]  V. Bonzom,et al.  Radiative Corrections in the Boulatov-Ooguri Tensor Model: The 2-Point Function , 2011, 1101.4294.

[162]  M. Arzano,et al.  Anomalous dimension in three-dimensional semiclassical gravity , 2011, 1108.1507.

[163]  Gianluca Calcagni,et al.  Fractional and noncommutative spacetimes , 2011, 1107.5308.

[164]  Jacobs,et al.  New limits on spatial anisotropy from optically-pumped sup201Hg and 199Hg. , 1986, Physical review letters.

[165]  G. W. Pratt,et al.  Planck 2015. XX. Constraints on inflation , 2015, 1502.02114.

[166]  G. Calcagni,et al.  Super-accelerating bouncing cosmology in asymptotically free non-local gravity , 2013, 1306.5332.

[167]  Gianluca Calcagni,et al.  Black-hole entropy and minimal diffusion , 2013, 1307.6122.

[168]  R. Cowsik,et al.  A bound on violations of Lorentz invariance , 1998 .

[169]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[170]  A. Mazumdar,et al.  Towards singularity- and ghost-free theories of gravity. , 2011, Physical review letters.

[171]  V. Lahoche,et al.  Functional renormalization group approach for tensorial group field theory: a rank-6 model with closure constraint , 2015, 1508.06384.

[172]  J. Donoghue The effective field theory treatment of quantum gravity , 2012, 1209.3511.

[173]  Non-commutative Renormalization , 2004, 0705.0705.

[174]  V. Oguri,et al.  THE COSMIC MICROWAVE BACKGROUND SPECTRUM AND AN UPPER LIMIT FOR FRACTAL SPACE DIMENSIONALITY , 2008, 0806.2675.

[175]  B R Greene,et al.  String theory. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[176]  M. Bojowald,et al.  Deformed General Relativity , 2012, 1212.4773.

[177]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[178]  Lorentz Invariance Violation and its Role in Quantum Gravity Phenomenology , 2006, hep-th/0603002.

[179]  V. Rivasseau Why renormalizable noncommutative quantum field theories , 2007, 0711.1748.

[180]  E. Harikumar,et al.  Dimensional flow in the kappa-deformed spacetime , 2015, 1504.07773.

[181]  E. Akkermans Statistical Mechanics and Quantum Fields on Fractals , 2012, 1210.6763.

[182]  R. Szabo Quantum field theory on noncommutative spaces , 2001, hep-th/0109162.

[183]  K. Svozil Quantum field theory on fractal spacetime: a new regularisation method , 1987 .

[184]  Power-Counting Theorem for Non-Local Matrix Models and Renormalisation , 2003, hep-th/0305066.

[185]  Frank H. Stillinger,et al.  Axiomatic basis for spaces with noninteger dimension , 1977 .

[186]  A. Johansen,et al.  Evidence of Discrete Scale Invariance in DLA and Time-to-Failure by Canonical Averaging , 1998 .

[187]  G. Eyink Quantum field-theory models on fractal spacetime , 1989 .

[188]  A. P. Balachandran,et al.  Quantum Fields on Noncommutative Spacetimes: Theory and Phenomenology , 2010, 1003.4356.

[189]  M. Serone,et al.  Renormalization group in Lifshitz-type theories , 2009, 0906.3477.

[190]  L. Sindoni,et al.  Quantum Cosmology from Group Field Theory Condensates: a Review , 2016, 1602.08104.

[191]  Anupam Mazumdar,et al.  Bouncing universes in string-inspired gravity , 2005, hep-th/0508194.

[192]  Bergfinnur Durhuus,et al.  Random walks on combs , 2006 .

[193]  Christopher T. Kello,et al.  Scaling laws in cognitive sciences , 2010, Trends in Cognitive Sciences.

[194]  G. Amelino-Camelia,et al.  A CYCLIC INTEGRAL ON κ-MINKOWSKI NONCOMMUTATIVE SPACE–TIME , 2006 .

[195]  N. Deruelle,et al.  Conformal Equivalence in Classical Gravity: the Example of “Veiled” General Relativity , 2010, 1007.3563.

[196]  J. Magueijo New varying speed of light theories , 2003, astro-ph/0305457.

[197]  Daniel F. Litim,et al.  Renormalization group and the Planck scale , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[198]  Johannes Thurigen,et al.  Discrete quantum geometries and their effective dimension , 2015, 1510.08706.

[199]  A. Görlich,et al.  Characteristics of the new phase in CDT , 2016, The European physical journal. C, Particles and fields.

[200]  J. Ambjorn,et al.  Causal dynamical triangulations and the quest for quantum gravity , 2010, 1004.0352.

[201]  Laurent Nottale,et al.  Scale Relativity and Fractal Space-Time: Theory and Applications , 2008, 0812.3857.

[202]  G. Calcagni Multifractional spacetimes, asymptotic safety and Ho\v{r}ava-Lifshitz gravity , 2012, 1209.4376.

[203]  M. Bojowald,et al.  Deformed General Relativity and Effective Actions from Loop Quantum Gravity , 2011, 1112.1899.

[204]  M. Ronco On the UV Dimensions of Loop Quantum Gravity , 2016, 1605.05979.

[205]  The spectral dimension of random trees , 2002, cond-mat/0206233.

[206]  J. Schwarz,et al.  String theory and M-theory , 2007 .

[207]  E. Harikumar,et al.  Spectral Dimension of kappa-deformed space-time , 2015, 1501.00254.

[208]  L. Sindoni,et al.  Homogeneous cosmologies as group field theory condensates , 2013, 1311.1238.

[209]  Jonas Mureika Primordial Black Hole Evaporation and Spontaneous Dimensional Reduction , 2012, 1204.3619.

[210]  Murakami,et al.  Observation of a Very Energetic Cosmic Ray Well Beyond the Predicted 2.7 K Cutoff in the Primary Energy Spectrum. , 1994, Physical review letters.

[211]  T. Thiemann Introduction to Modern Canonical Quantum General Relativity , 2001, gr-qc/0110034.

[212]  Ryszard S. Romaniuk,et al.  Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012 .

[213]  Raoul R. Nigmatullin,et al.  Section 10. Dielectric methods, theory and simulation Is there geometrical/physical meaning of the fractional integral with complex exponent? , 2005 .

[214]  G. Calcagni Multiscale spacetimes from first principles , 2016, 1609.02776.

[215]  J. B. Geloun,et al.  Functional renormalisation group approach for tensorial group field theory: a rank-3 model , 2014, Journal of High Energy Physics.

[216]  Fabien Vignes-Tourneret,et al.  Renormalisation of Noncommutative ϕ4-Theory by Multi-Scale Analysis , 2006 .

[217]  Quantum Equivalence Principle Violations in Scalar-Tensor Theories , 2011, 1108.6028.

[218]  Daniele Oriti Approaches to Quantum Gravity , 2009 .

[219]  T. Chiba,et al.  Conformal-Frame (In)dependence of Cosmological Observations in Scalar-Tensor Theory , 2013, 1308.1142.

[220]  Laurent Nottale,et al.  Fractal Space-Time And Microphysics: Towards A Theory Of Scale Relativity , 1993 .

[221]  G. Calcagni Diffusion in quantum geometry , 2012, 1204.2550.

[222]  G. Calcagni Diffusion in multiscale spacetimes. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[223]  Michele Caputo,et al.  Mean fractional-order-derivatives differential equations and filters , 1995, ANNALI DELL UNIVERSITA DI FERRARA.

[224]  Super-Renormalizable Multidimensional Gravity: Theory and Applications , 2013 .

[225]  G. Calcagni Gravity on a multifractal , 2010, 1012.1244.