Multifractional theories: an unconventional review
暂无分享,去创建一个
[1] Generalized Lorentz invariance with an invariant energy scale , 2002, gr-qc/0207085.
[2] E. Martinec. Nonrenormalization theorems and fermionic string finiteness , 1986 .
[3] Astrid Eichhorn,et al. Spectral dimension in causal set quantum gravity , 2013, 1311.2530.
[4] J. Jurkiewicz,et al. Nonperturbative quantum gravity , 2012, 1203.3591.
[5] J. Polchinski. Comment on ‘Small Lorentz violations in quantum gravity: do they lead to unacceptably large effects?’ , 2011, 1106.6346.
[6] Zeilinger,et al. Measuring the dimension of space time. , 1985, Physical review letters.
[7] J. Polchinski. String Theory: Preface , 1998 .
[8] J. Wess,et al. Noncommutative Spacetimes: Symmetries in Noncommutative Geometry and Field Theory , 2009 .
[9] Leonardo Modesto,et al. Super-renormalizable Quantum Gravity , 2011, 1107.2403.
[10] I M Sokolov,et al. Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[11] G. Calcagni,et al. Proposal for field M-theory , 2014 .
[12] Noncommutative geometry and the standard model with neutrino mixing , 2006, hep-th/0608226.
[13] E. Akkermans,et al. Thermodynamics of photons on fractals. , 2010, Physical review letters.
[14] G. Calcagni,et al. Particle-physics constraints on multifractal spacetimes , 2015, 1512.02621.
[15] P. Jizba,et al. The emergence of Special and Doubly Special Relativity , 2011, 1105.3930.
[16] K. Stelle. Renormalization of Higher Derivative Quantum Gravity , 1977 .
[17] Didier Sornette,et al. Punctuated vortex coalescence and discrete scale invariance in two-dimensional turbulence , 1999, cond-mat/9902247.
[18] F. Adda. Mathematical model for fractal manifold , 2007, 0711.3582.
[19] R. Loll,et al. The emergence of spacetime or quantum gravity on your desktop , 2007, 0711.0273.
[20] Carl F. Lorenzo,et al. Variable Order and Distributed Order Fractional Operators , 2002 .
[21] Michel L. Lapidus,et al. Fractal Geometry, Complex Dimensions and Zeta Functions , 2006 .
[22] Christoph Rahmede,et al. Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation , 2008, 0805.2909.
[23] Renormalisation of phi4-theory on noncommutative Bbb R2 in the matrix base , 2003, hep-th/0307017.
[24] Thordur Jonsson,et al. THE SPECTRAL DIMENSION OF THE BRANCHED POLYMER PHASE OF TWO-DIMENSIONAL QUANTUM GRAVITY , 1998 .
[25] G. Calcagni. Geometry of fractional spaces , 2011, 1106.5787.
[26] M. Reuter,et al. Fractal spacetime structure in asymptotically safe gravity , 2005 .
[27] S. Steinhaus,et al. Investigation of the spinfoam path integral with quantum cuboid intertwiners , 2015, 1508.07961.
[28] Y. M. Cho,et al. Quantum violation of the equivalence principle in Brans - Dicke theory , 1997 .
[29] K. Stelle. Classical gravity with higher derivatives , 1978 .
[30] F. Pretorius,et al. Theoretical Physics Implications of the Binary Black-Hole Merger GW150914 , 2016 .
[31] Gravity and the standard model with neutrino mixing , 2006, hep-th/0610241.
[32] Alain Connes,et al. Noncommutative geometry , 1994 .
[33] Carlo Rovelli. Quantum gravity , 2008, Scholarpedia.
[34] A. Mazumdar,et al. Towards a resolution of the cosmological singularity in non-local higher derivative theories of gravity , 2010, 1005.0590.
[35] Riccardo Martini,et al. Functional Renormalisation Group analysis of Tensorial Group Field Theories on $\mathbb{R}^d$ , 2016, 1601.08211.
[36] Gianluca Calcagni,et al. Geometry and field theory in multi-fractional spacetime , 2011, 1107.5041.
[37] J. Jurkiewicz,et al. Spectral dimension of the universe , 2005, hep-th/0505113.
[38] H. Verlinde,et al. Multiloop calculations in covariant superstring theory , 1987 .
[39] G. Amelino-Camelia. Relativity: Special treatment , 2002, Nature.
[40] D. Oriti,et al. Quantum cosmology from quantum gravity condensates: cosmological variables and lattice-refined dynamics , 2014, 1407.8167.
[41] Remarks on the Notions of General Covariance and Background Independence , 2006, gr-qc/0603087.
[42] Alejandro Perez,et al. The Spin-Foam Approach to Quantum Gravity , 2012, Living reviews in relativity.
[43] H. Srivastava,et al. Theory and Applications of Fractional Differential Equations , 2006 .
[44] Fay Dowker,et al. Introduction to causal sets and their phenomenology , 2013 .
[45] G. Calcagni,et al. Standard Model in multiscale theories and observational constraints , 2015, 1512.06858.
[46] A. Kostelecký,et al. Electrodynamics with Lorentz-violating operators of arbitrary dimension , 2009, 0905.0031.
[47] C. Rovelli. A new look at loop quantum gravity , 2010, 1004.1780.
[48] G. Calcagni,et al. Quantum field theory with varying couplings , 2013, 1306.0629.
[49] Alejandro Perez,et al. Spin Foam Models for Quantum Gravity , 2003, gr-qc/0301113.
[50] Sidney Coleman,et al. High-energy tests of Lorentz invariance , 1999 .
[51] Georgios Giasemidis,et al. Multigraph models for causal quantum gravity and scale dependent spectral dimension , 2012, 1202.6322.
[52] B. Holstein,et al. Low energy theorems of quantum gravity from effective field theory , 2015, 1506.00946.
[53] D L Gilden,et al. 1/f noise in human cognition. , 1995, Science.
[54] S. Carlip,et al. Lower bound on the spectral dimension near a black hole , 2011, 1108.4686.
[55] D. Sornette. Discrete scale invariance and complex dimensions , 1997, cond-mat/9707012.
[56] G. Calcagni,et al. What gravity waves are telling about quantum spacetime , 2016, 1604.00541.
[57] Zu-Guo Yu,et al. FRACTIONAL INTEGRAL ASSOCIATED TO THE SELF-SIMILAR SET OR THE GENERALIZED SELF-SIMILAR SET AND ITS PHYSICAL INTERPRETATION , 1996 .
[58] G. Calcagni. Quantum field theory, gravity and cosmology in a fractal universe , 2010, 1001.0571.
[59] G. Calcagni. Relativistic particle in multiscale spacetimes , 2013, 1306.5965.
[60] V. Rivasseau,et al. Renormalization of a SU(2) Tensorial Group Field Theory in Three Dimensions , 2014, Communications in Mathematical Physics.
[61] A. Schafer,et al. Bounds for the fractal dimension of space , 1986 .
[62] J. Atteia,et al. Study of Time Lags in HETE-2 Gamma-Ray Bursts with Redshift: Search for Astrophysical Effects and a Quantum Gravity Signature , 2006, astro-ph/0603725.
[63] S. Krantz. Fractal geometry , 1989 .
[64] Anonymous,et al. Erratum: Tests of General Relativity with GW150914 [Phys. Rev. Lett. 116, 221101 (2016)]. , 2018, Physical review letters.
[65] F. Caravelli,et al. 1 3 M ay 2 00 9 Fractal Dimension in 3 d Spin-Foams , 2009 .
[66] F. Piazza,et al. Scalar-tensor theories, trace anomalies, and the QCD frame , 2012, 1202.2105.
[67] G. Calcagni. Lorentz violations in multifractal spacetimes , 2016, 1603.03046.
[68] Anatoly N. Kochubei,et al. Distributed-order calculus: An operator-theoretic interpretation , 2007, 0710.1710.
[69] C. Cookson. The Asymptotic Safety Scenario In Quantum Gravity , 2015 .
[70] G. Hooft. Dimensional Reduction in Quantum Gravity , 1993, gr-qc/9310026.
[71] Petr Hořava. Quantum Gravity at a Lifshitz Point , 2009, 0901.3775.
[72] Barton Zwiebach,et al. A first course in string theory , 2004 .
[73] Jacob D. Bekenstein,et al. Fine Structure Constant: Is It Really a Constant? , 1982 .
[74] G. Calcagni,et al. Dimensional flow and fuzziness in quantum gravity: emergence of stochastic spacetime , 2017, 1706.02159.
[75] J. Magnen,et al. Commutative limit of a renormalizable noncommutative model , 2008, 0807.4093.
[76] G. Calcagni,et al. Anomaly-free cosmological perturbations in effective canonical quantum gravity , 2014, 1404.1018.
[77] Covariant and locally Lorentz-invariant varying speed of light theories , 2000, gr-qc/0007036.
[78] S. Zohren,et al. Dynamical dimensional reduction in toy models of 4D causal quantum gravity , 2012, 1202.2710.
[79] G. Calcagni,et al. Deformed symmetries in noncommutative and multifractional spacetimes , 2016, 1608.01667.
[80] D Huet,et al. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .
[81] The Ligo Scientific Collaboration,et al. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016, 1606.04855.
[82] G. Calcagni,et al. Momentum transforms and Laplacians in fractional spaces , 2012, 1202.5383.
[83] Introduction to multifractional spacetimes , 2012, 1209.1110.
[84] G. Calcagni,et al. Varying electric charge in multiscale spacetimes , 2013, 1305.3497.
[85] Anatoly N. Kochubei,et al. Distributed order calculus and equations of ultraslow diffusion , 2008 .
[86] Pseudo)issue of the conformal frame revisited , 2006, gr-qc/0612075.
[87] V. Rivasseau,et al. A Translation-Invariant Renormalizable Non-Commutative Scalar Model , 2008, 0802.0791.
[88] L. Sindoni,et al. Cosmology from group field theory formalism for quantum gravity. , 2013, Physical review letters.
[89] Bergfinnur Durhuus,et al. The Spectral Dimension of Generic Trees , 2006, math-ph/0607020.
[90] J. Jurkiewicz,et al. Scaling in four-dimensional quantum gravity , 1995, hep-th/9503006.
[91] J. Jurkiewicz,et al. The spectral dimension of the universe is scale dependent. , 2005, Physical review letters.
[92] J. Magueijo. Bimetric varying speed of light theories and primordial fluctuations , 2008, 0807.1689.
[93] L. Modesto,et al. Super-renormalizable and finite gravitational theories , 2014, 1407.8036.
[94] M. Reuter,et al. Asymptotic Safety, Fractals, and Cosmology , 2012, 1205.5431.
[95] Dario Benedetti,et al. Fractal properties of quantum spacetime. , 2008, Physical review letters.
[96] Spectral zeta functions of fractals and the complex dynamics of polynomials , 2005, math/0505546.
[97] G. Amelino-Camelia. DOUBLY-SPECIAL RELATIVITY: FIRST RESULTS AND KEY OPEN PROBLEMS , 2002, gr-qc/0210063.
[98] Riccardo Martini,et al. Functional Renormalisation Group analysis of a Tensorial Group Field Theory on R 3 , 2015 .
[99] Joe Henson,et al. Spectral geometry as a probe of quantum spacetime , 2009, 0911.0401.
[100] J. Pullin,et al. Small Lorentz violations in quantum gravity: do they lead to unacceptably large effects? , 2011, 1106.1417.
[101] G. Calcagni. ABC of multi-fractal spacetimes and fractional sea turtles , 2016, The European Physical Journal C.
[102] G. Amelino-Camelia,et al. Spacetime-noncommutativity regime of Loop Quantum Gravity , 2016, 1605.00497.
[103] B. Altschul. Finite duration and energy effects in Lorentz-violating vacuum Cerenkov radiation , 2007, 0709.4478.
[104] TOPICAL REVIEW: The asymptotic safety scenario in quantum gravity: an introduction , 2006, gr-qc/0610018.
[105] G. Calcagni. Multi-scale gravity and cosmology , 2013, 1307.6382.
[106] G. Calcagni,et al. Spectral dimension of quantum geometries , 2013, 1311.3340.
[107] F. Pretorius,et al. Theoretical Physics Implications of the Binary Black-Hole Mergers GW150914 and GW151226 , 2016, 1603.08955.
[108] Gianluca Calcagni,et al. Probing the quantum nature of spacetime by diffusion , 2013, 1304.7247.
[109] Sumati Surya,et al. Directions in Causal Set Quantum Gravity , 2011, 1103.6272.
[110] L. Modesto. Super-renormalizable Multidimensional Quantum Gravity , 2012, 1202.3151.
[111] Petr Hořava. Spectral dimension of the universe in quantum gravity at a lifshitz point. , 2009, Physical review letters.
[112] G. Calcagni,et al. Symmetries and propagator in multifractional scalar field theory , 2012, 1210.2754.
[113] Jin-Rong Liang,et al. Integrals and derivatives on net fractals , 2003 .
[114] D. Al,et al. Detection of a Cosmic Ray with Measured Energy Well Beyond the Expected Spectral Cutoff due to Cosmic Microwave Radiation , 1994 .
[115] G. Calcagni,et al. Quantum mechanics in fractional and other anomalous spacetimes , 2012, 1207.4473.
[116] A.Coleman,et al. SEARCHES FOR LARGE-SCALE ANISOTROPY IN THE ARRIVAL DIRECTIONS OF COSMIC RAYS DETECTED ABOVE ENERGY OF 1019 eV AT THE PIERRE AUGER OBSERVATORY AND THE TELESCOPE ARRAY , 2014, 1409.3128.
[117] John Linsley,et al. Evidence for a primary cosmic-ray particle with energy 10**20-eV , 1963 .
[118] J. B. Geloun. Two- and four-loop β-functions of rank-4 renormalizable tensor field theories , 2012, 1205.5513.
[119] G. Calcagni. Discrete to continuum transition in multifractal spacetimes , 2011, 1106.0295.
[120] R. Dicke. Mach's Principle and Invariance under Transformation of Units , 1962 .
[121] J. Wheater,et al. Continuum random combs and scale-dependent spectral dimension , 2011, 1101.4174.
[122] B. Müller,et al. Improved bounds on the dimension of space-time. , 1986, Physical Review Letters.
[123] G. A. Camelia. Testable scenario for relativity with minimum - length , 2001 .
[124] M. Lapidus,et al. Fractal Geometry and Number Theory: Complex Dimensions of Fractal Strings and Zeros of Zeta Functions , 2005 .
[125] Sylvain Carrozza,et al. Renormalization of Tensorial Group Field Theories: Abelian U(1) Models in Four Dimensions , 2012, 1207.6734.
[126] Conformal transformations in classical gravitational theories and in cosmology , 1998, gr-qc/9811047.
[127] Jure Zupan,et al. Higgs after the discovery: a status report , 2012, 1207.1718.
[128] D. Anselmi,et al. Vacuum Cherenkov radiation in quantum electrodynamics with high-energy Lorentz violation , 2011, 1101.2019.
[129] Test of special relativity from K physics , 1997, hep-ph/9709350.
[130] Piero Nicolini,et al. Spectral dimension of a quantum universe , 2009, 0912.0220.
[131] D Huet,et al. Tests of General Relativity with GW150914. , 2016, Physical review letters.
[132] Daniele Oriti. Spacetime geometry from algebra: spin foam models for non-perturbative quantum gravity , 2001 .
[133] Matt Visser,et al. Spectral dimension as a probe of the ultraviolet continuum regime of causal dynamical triangulations. , 2011, Physical review letters.
[134] M. Bojowald,et al. Hypersurface-deformation algebroids and effective spacetime models , 2016, 1610.08355.
[135] M. Arzano,et al. Diffusion on \kappa -Minkowski space , 2014, 1404.4762.
[136] J. Jurkiewicz,et al. Evidence for asymptotic safety from dimensional reduction in causal dynamical triangulations , 2014, 1411.7712.
[137] G. Calcagni,et al. Dimensional flow in discrete quantum geometries , 2014, 1412.8390.
[138] Daniel Sudarsky,et al. Lorentz invariance and quantum gravity: an additional fine-tuning problem? , 2004, Physical review letters.
[139] Laurent Nottale,et al. Scale-relativity and quantization of the universe I. Theoretical framework , 1997 .
[140] A. Ashtekar,et al. Quantum gravity extension of the inflationary scenario. , 2012, Physical review letters.
[141] Riccardo Martini,et al. Functional Renormalization Group analysis of a Tensorial Group Field Theory on , 2015, 1508.01855.
[142] J. Ellis,et al. Comments on Graviton Propagation in Light of GW150914 , 2016, 1602.04764.
[143] G. Amelino-Camelia. Relativity in space-times with short distance structure governed by an observer independent (Planckian) length scale , 2000, gr-qc/0012051.
[144] Michael B. Green,et al. Infinity Cancellations in SO(32) Superstring Theory , 1985 .
[145] Superrenormalizable gauge and gravitational theories , 1997, hep-th/9702146.
[146] A. Mazumdar,et al. Towards understanding the ultraviolet behavior of quantum loops in infinite-derivative theories of gravity , 2014, 1412.3467.
[147] Physical consequences of complex dimensions of fractals , 2009, 0903.3681.
[148] S. Carlip. Spontaneous Dimensional Reduction in Short‐Distance Quantum Gravity? , 2009, 0909.3329.
[149] C. A. Oxborrow,et al. Planck2015 results , 2015, Astronomy & Astrophysics.
[150] G. Calcagni,et al. Quantum spectral dimension in quantum field theory , 2014, 1408.0199.
[151] G. Hooft,et al. One loop divergencies in the theory of gravitation , 1974 .
[152] Reconstructing the universe , 2005, hep-th/0505154.
[153] Laura Castell'o Gomar,et al. Quantum corrections to the Mukhanov-Sasaki equations , 2016, 1603.08448.
[154] T. Thiemann. Modern Canonical Quantum General Relativity , 2007 .
[155] G. Calcagni,et al. Nonlocality in string theory , 2013, 1310.4957.
[156] E. D'hoker,et al. Two-loop vacuum energy for Calabi–Yau orbifold models ☆ , 2013, 1307.1749.
[157] G. Calcagni,et al. Spectral dimension and diffusion in multiscale spacetimes , 2013, 1304.2709.
[158] F. David. What is the intrinsic geometry of two-dimensional quantum gravity? , 1992 .
[159] G. Calcagni. Fractal universe and quantum gravity. , 2009, Physical review letters.
[160] J. Magueijo,et al. Dimensional reduction in momentum space and scale-invariant cosmological fluctuations , 2013 .
[161] V. Bonzom,et al. Radiative Corrections in the Boulatov-Ooguri Tensor Model: The 2-Point Function , 2011, 1101.4294.
[162] M. Arzano,et al. Anomalous dimension in three-dimensional semiclassical gravity , 2011, 1108.1507.
[163] Gianluca Calcagni,et al. Fractional and noncommutative spacetimes , 2011, 1107.5308.
[164] Jacobs,et al. New limits on spatial anisotropy from optically-pumped sup201Hg and 199Hg. , 1986, Physical review letters.
[165] G. W. Pratt,et al. Planck 2015. XX. Constraints on inflation , 2015, 1502.02114.
[166] G. Calcagni,et al. Super-accelerating bouncing cosmology in asymptotically free non-local gravity , 2013, 1306.5332.
[167] Gianluca Calcagni,et al. Black-hole entropy and minimal diffusion , 2013, 1307.6122.
[168] R. Cowsik,et al. A bound on violations of Lorentz invariance , 1998 .
[169] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[170] A. Mazumdar,et al. Towards singularity- and ghost-free theories of gravity. , 2011, Physical review letters.
[171] V. Lahoche,et al. Functional renormalization group approach for tensorial group field theory: a rank-6 model with closure constraint , 2015, 1508.06384.
[172] J. Donoghue. The effective field theory treatment of quantum gravity , 2012, 1209.3511.
[173] Non-commutative Renormalization , 2004, 0705.0705.
[174] V. Oguri,et al. THE COSMIC MICROWAVE BACKGROUND SPECTRUM AND AN UPPER LIMIT FOR FRACTAL SPACE DIMENSIONALITY , 2008, 0806.2675.
[175] B R Greene,et al. String theory. , 1994, Proceedings of the National Academy of Sciences of the United States of America.
[176] M. Bojowald,et al. Deformed General Relativity , 2012, 1212.4773.
[177] Von Welch,et al. Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.
[178] Lorentz Invariance Violation and its Role in Quantum Gravity Phenomenology , 2006, hep-th/0603002.
[179] V. Rivasseau. Why renormalizable noncommutative quantum field theories , 2007, 0711.1748.
[180] E. Harikumar,et al. Dimensional flow in the kappa-deformed spacetime , 2015, 1504.07773.
[181] E. Akkermans. Statistical Mechanics and Quantum Fields on Fractals , 2012, 1210.6763.
[182] R. Szabo. Quantum field theory on noncommutative spaces , 2001, hep-th/0109162.
[183] K. Svozil. Quantum field theory on fractal spacetime: a new regularisation method , 1987 .
[184] Power-Counting Theorem for Non-Local Matrix Models and Renormalisation , 2003, hep-th/0305066.
[185] Frank H. Stillinger,et al. Axiomatic basis for spaces with noninteger dimension , 1977 .
[186] A. Johansen,et al. Evidence of Discrete Scale Invariance in DLA and Time-to-Failure by Canonical Averaging , 1998 .
[187] G. Eyink. Quantum field-theory models on fractal spacetime , 1989 .
[188] A. P. Balachandran,et al. Quantum Fields on Noncommutative Spacetimes: Theory and Phenomenology , 2010, 1003.4356.
[189] M. Serone,et al. Renormalization group in Lifshitz-type theories , 2009, 0906.3477.
[190] L. Sindoni,et al. Quantum Cosmology from Group Field Theory Condensates: a Review , 2016, 1602.08104.
[191] Anupam Mazumdar,et al. Bouncing universes in string-inspired gravity , 2005, hep-th/0508194.
[192] Bergfinnur Durhuus,et al. Random walks on combs , 2006 .
[193] Christopher T. Kello,et al. Scaling laws in cognitive sciences , 2010, Trends in Cognitive Sciences.
[194] G. Amelino-Camelia,et al. A CYCLIC INTEGRAL ON κ-MINKOWSKI NONCOMMUTATIVE SPACE–TIME , 2006 .
[195] N. Deruelle,et al. Conformal Equivalence in Classical Gravity: the Example of “Veiled” General Relativity , 2010, 1007.3563.
[196] J. Magueijo. New varying speed of light theories , 2003, astro-ph/0305457.
[197] Daniel F. Litim,et al. Renormalization group and the Planck scale , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[198] Johannes Thurigen,et al. Discrete quantum geometries and their effective dimension , 2015, 1510.08706.
[199] A. Görlich,et al. Characteristics of the new phase in CDT , 2016, The European physical journal. C, Particles and fields.
[200] J. Ambjorn,et al. Causal dynamical triangulations and the quest for quantum gravity , 2010, 1004.0352.
[201] Laurent Nottale,et al. Scale Relativity and Fractal Space-Time: Theory and Applications , 2008, 0812.3857.
[202] G. Calcagni. Multifractional spacetimes, asymptotic safety and Ho\v{r}ava-Lifshitz gravity , 2012, 1209.4376.
[203] M. Bojowald,et al. Deformed General Relativity and Effective Actions from Loop Quantum Gravity , 2011, 1112.1899.
[204] M. Ronco. On the UV Dimensions of Loop Quantum Gravity , 2016, 1605.05979.
[205] The spectral dimension of random trees , 2002, cond-mat/0206233.
[206] J. Schwarz,et al. String theory and M-theory , 2007 .
[207] E. Harikumar,et al. Spectral Dimension of kappa-deformed space-time , 2015, 1501.00254.
[208] L. Sindoni,et al. Homogeneous cosmologies as group field theory condensates , 2013, 1311.1238.
[209] Jonas Mureika. Primordial Black Hole Evaporation and Spontaneous Dimensional Reduction , 2012, 1204.3619.
[210] Murakami,et al. Observation of a Very Energetic Cosmic Ray Well Beyond the Predicted 2.7 K Cutoff in the Primary Energy Spectrum. , 1994, Physical review letters.
[211] T. Thiemann. Introduction to Modern Canonical Quantum General Relativity , 2001, gr-qc/0110034.
[212] Ryszard S. Romaniuk,et al. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012 .
[213] Raoul R. Nigmatullin,et al. Section 10. Dielectric methods, theory and simulation Is there geometrical/physical meaning of the fractional integral with complex exponent? , 2005 .
[214] G. Calcagni. Multiscale spacetimes from first principles , 2016, 1609.02776.
[215] J. B. Geloun,et al. Functional renormalisation group approach for tensorial group field theory: a rank-3 model , 2014, Journal of High Energy Physics.
[216] Fabien Vignes-Tourneret,et al. Renormalisation of Noncommutative ϕ4-Theory by Multi-Scale Analysis , 2006 .
[217] Quantum Equivalence Principle Violations in Scalar-Tensor Theories , 2011, 1108.6028.
[218] Daniele Oriti. Approaches to Quantum Gravity , 2009 .
[219] T. Chiba,et al. Conformal-Frame (In)dependence of Cosmological Observations in Scalar-Tensor Theory , 2013, 1308.1142.
[220] Laurent Nottale,et al. Fractal Space-Time And Microphysics: Towards A Theory Of Scale Relativity , 1993 .
[221] G. Calcagni. Diffusion in quantum geometry , 2012, 1204.2550.
[222] G. Calcagni. Diffusion in multiscale spacetimes. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.
[223] Michele Caputo,et al. Mean fractional-order-derivatives differential equations and filters , 1995, ANNALI DELL UNIVERSITA DI FERRARA.
[224] Super-Renormalizable Multidimensional Gravity: Theory and Applications , 2013 .
[225] G. Calcagni. Gravity on a multifractal , 2010, 1012.1244.