The role of ubiquitin in NF-kappaB regulatory pathways.

Nuclear factor kappa enhancer binding protein (NF-kappaB) regulates diverse biological processes including immunity, inflammation, and apoptosis. A vast array of cellular stimuli converges on NF-kappaB, and ubiquitination plays an essential role in the coordination of these signals to regulate NF-kappaB activity. At least three steps in NF-kappaB activation directly involve ubiquitination: proteasomal degradation of inhibitor of NF-kappaB (IkappaB), processing of NF-kappaB precursors, and activation of the transforming growth factor (TGF)-beta-activated kinase (TAK1) and IkappaB kinase (IKK) complexes. In this review, we discuss recent advances in the identification and characterization of ubiquitination and deubiquitination machinery that regulate NF-kappaB. Particular emphasis is given to proteasome-independent functions of ubiquitin, specifically its role in the activation of protein kinase complexes and in coordination of cell survival and apoptosis signals downstream of tumor necrosis factor alpha (TNFalpha).

[1]  P. Cohen,et al.  Interleukin-1 (IL-1) Induces the Lys63-Linked Polyubiquitination of IL-1 Receptor-Associated Kinase 1 To Facilitate NEMO Binding and the Activation of IκBα Kinase , 2008, Molecular and Cellular Biology.

[2]  John Calvin Reed,et al.  Ubiquitin-conjugating enzyme Ubc13 is a critical component of TNF receptor-associated factor (TRAF)-mediated inflammatory responses , 2007, Proceedings of the National Academy of Sciences.

[3]  J. Derry,et al.  Impaired regulation of NF-kappaB and increased susceptibility to colitis-associated tumorigenesis in CYLD-deficient mice. , 2006, The Journal of clinical investigation.

[4]  G. Ghosh,et al.  The 20S proteasome processes NF‐κB1 p105 into p50 in a translation‐independent manner , 2006, The EMBO journal.

[5]  M. Nussenzweig,et al.  TRAF2 is essential for JNK but not NF-kappaB activation and regulates lymphocyte proliferation and survival. , 1997, Immunity.

[6]  Xiaodong Wang,et al.  Smac, a Mitochondrial Protein that Promotes Cytochrome c–Dependent Caspase Activation by Eliminating IAP Inhibition , 2000, Cell.

[7]  Aaron Ciechanover,et al.  The HECT family of E3 ubiquitin ligases: multiple players in cancer development. , 2008, Cancer cell.

[8]  Ramin Massoumi,et al.  Cyld Inhibits Tumor Cell Proliferation by Blocking Bcl-3-Dependent NF-κB Signaling , 2006, Cell.

[9]  D. Payan,et al.  Substrate Modification with Lysine 63-linked Ubiquitin Chains through the UBC13-UEV1A Ubiquitin-conjugating Enzyme* , 2007, Journal of Biological Chemistry.

[10]  David L. Vaux,et al.  IAP Antagonists Target cIAP1 to Induce TNFα-Dependent Apoptosis , 2007, Cell.

[11]  Somasekar Seshagiri,et al.  De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling , 2004, Nature.

[12]  M. Karin,et al.  Inhibition of JNK activation through NF-κB target genes , 2001, Nature.

[13]  W. Greene,et al.  Cotranslational Biogenesis of NF-κB p50 by the 26S Proteasome , 1998, Cell.

[14]  R. Surabhi,et al.  TAK1 is Critical for IκB Kinase-mediated Activation of the NF-κB Pathway , 2003 .

[15]  R. Brink,et al.  TRAF2 differentially regulates the canonical and noncanonical pathways of NF-kappaB activation in mature B cells. , 2004, Immunity.

[16]  J. Harper,et al.  Culprits in the degradation of cyclin E apprehended. , 1999, Genes & development.

[17]  E. Pietras,et al.  Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif , 2006, The EMBO journal.

[18]  R. Tibbetts,et al.  Molecular Linkage Between the Kinase ATM and NF-κB Signaling in Response to Genotoxic Stimuli , 2006, Science.

[19]  J. Ashwell,et al.  Lys63-Linked Polyubiquitination of IRAK-1 Is Required for Interleukin-1 Receptor- and Toll-Like Receptor-Mediated NF-κB Activation , 2008, Molecular and Cellular Biology.

[20]  D. Philpott,et al.  The ubiquitin-editing enzyme A20 restricts nucleotide-binding oligomerization domain containing 2-triggered signals. , 2008, Immunity.

[21]  A. Ciechanover,et al.  Mechanisms of ubiquitin-mediated, limited processingof the NF-κB1 precursor protein p105 , 2001 .

[22]  S. Akira,et al.  The Human T-Cell Leukemia Virus Type 1 Tax Oncoprotein Requires the Ubiquitin-Conjugating Enzyme Ubc13 for NF-κB Activation , 2007, Journal of Virology.

[23]  Zhijian J. Chen,et al.  Antiviral innate immunity pathways , 2006, Cell Research.

[24]  G. Cheng,et al.  Rescue of TRAF3-null mice by p100 NF-κB deficiency , 2006, The Journal of experimental medicine.

[25]  A. Ma,et al.  Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. , 2000, Science.

[26]  M. Karin,et al.  Signaling by proinflammatory cytokines: oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an amino-terminal effector domain. , 1999, Genes & development.

[27]  Osamu Takeuchi,et al.  TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity , 2007, Nature.

[28]  S. Ghosh,et al.  Shared Principles in NF-κB Signaling , 2008, Cell.

[29]  Honglin Zhou,et al.  Bcl10 activates the NF-κB pathway through ubiquitination of NEMO , 2004, Nature.

[30]  J. Hurley,et al.  Ubiquitin-binding domains. , 2006, The Biochemical journal.

[31]  S. Miyamoto,et al.  PIASy mediates NEMO sumoylation and NF-κB activation in response to genotoxic stress , 2006, Nature Cell Biology.

[32]  M. Kelliher,et al.  NOD2 Pathway Activation by MDP or Mycobacterium tuberculosis Infection Involves the Stable Polyubiquitination of Rip2* , 2007, Journal of Biological Chemistry.

[33]  Hao Wu,et al.  Site-specific Lys-63-linked Tumor Necrosis Factor Receptor-associated Factor 6 Auto-ubiquitination Is a Critical Determinant of IκB Kinase Activation* , 2006, Journal of Biological Chemistry.

[34]  Michael D. Schneider,et al.  The kinase TAK1 integrates antigen and cytokine receptor signaling for T cell development, survival and function , 2006, Nature Immunology.

[35]  M. Karin,et al.  The E3 Ubiquitin Ligase Itch Couples JNK Activation to TNFα-induced Cell Death by Inducing c-FLIPL Turnover , 2006, Cell.

[36]  A. Pichlmair,et al.  Innate recognition of viruses. , 2007, Immunity.

[37]  Y. Lo,et al.  Molecular basis for the unique deubiquitinating activity of the NF-kappaB inhibitor A20. , 2008, Journal of molecular biology.

[38]  G. Cheng,et al.  Specificity of TRAF3 in Its Negative Regulation of the Noncanonical NF-κB Pathway* , 2006, Journal of Biological Chemistry.

[39]  David L. Smith,et al.  Signal processing by its coil zipper domain activates IKKγ , 2008, Proceedings of the National Academy of Sciences.

[40]  M. White,et al.  Stimulus-specific Requirements for MAP3 Kinases in Activating the JNK Pathway* , 2002, The Journal of Biological Chemistry.

[41]  L. Cantley,et al.  Coordinated Regulation of Toll-Like Receptor and NOD2 Signaling by K63-Linked Polyubiquitin Chains , 2007, Molecular and Cellular Biology.

[42]  S. Jentsch,et al.  Productive RUPture: activation of transcription factors by proteasomal processing. , 2004, Biochimica et biophysica acta.

[43]  Y. Xiong,et al.  A Role for NF-κB Essential Modifier/IκB Kinase-γ (NEMO/IKKγ) Ubiquitination in the Activation of the IκB Kinase Complex by Tumor Necrosis Factor-α* , 2003, Journal of Biological Chemistry.

[44]  Michele Pagano,et al.  Control of Meiotic and Mitotic Progression by the F Box Protein β-Trcp1 In Vivo , 2003 .

[45]  Linda Hicke,et al.  Ubiquitin-binding domains , 2005, Nature Reviews Molecular Cell Biology.

[46]  E. Harhaj,et al.  NF-κB-Inducing Kinase Regulates the Processing of NF-κB2 p100 , 2001 .

[47]  S. Jentsch,et al.  Proteasome-mediated protein processing by bidirectional degradation initiated from an internal site , 2006, Nature Structural &Molecular Biology.

[48]  Yili Yang,et al.  Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. , 2000, Science.

[49]  Shao-Cong Sun,et al.  Regulation of T cell development by the deubiquitinating enzyme CYLD , 2006, Nature Immunology.

[50]  A. Fischer,et al.  X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-κB signaling , 2001, Nature Genetics.

[51]  J. Minna,et al.  Autocrine TNFalpha signaling renders human cancer cells susceptible to Smac-mimetic-induced apoptosis. , 2007, Cancer cell.

[52]  C. Scheidereit,et al.  A pervasive role of ubiquitin conjugation in activation and termination of IκB kinase pathways , 2005, EMBO reports.

[53]  René Bernards,et al.  A Genomic and Functional Inventory of Deubiquitinating Enzymes , 2005, Cell.

[54]  K. Ishii,et al.  Thymocyte TCR Signaling Cutting Edge: Pivotal Function of Ubc13 in , 2006 .

[55]  M. Bertrand,et al.  cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. , 2008, Molecular cell.

[56]  Zhijian J. Chen,et al.  Signal-induced ubiquitination of IκBα by the F-box protein Slimb/β-TrCP , 1999 .

[57]  L. Fitzpatrick,et al.  Deubiquitinating enzyme CYLD negatively regulates the ubiquitin-dependent kinase Tak1 and prevents abnormal T cell responses , 2007, The Journal of experimental medicine.

[58]  H. Ploegh,et al.  Zinc-finger protein A20, a regulator of inflammation and cell survival, has de-ubiquitinating activity. , 2004, The Biochemical journal.

[59]  R. Gaynor,et al.  Role of the TAB2‐related protein TAB3 in IL‐1 and TNF signaling , 2003, The EMBO journal.

[60]  A. Fong,et al.  Genetic Evidence for the Essential Role of β-Transducin Repeat-containing Protein in the Inducible Processing of NF-κB2/p100* , 2002, The Journal of Biological Chemistry.

[61]  A. Ashworth,et al.  Identification of the familial cylindromatosis tumour-suppressor gene , 2000, Nature Genetics.

[62]  Vrajesh V. Parekh,et al.  Cutting Edge: K63-Linked Polyubiquitination of NEMO Modulates TLR Signaling and Inflammation In Vivo1 , 2008, The Journal of Immunology.

[63]  B. Lamothe,et al.  TRAF6 ubiquitin ligase is essential for RANKL signaling and osteoclast differentiation. , 2007, Biochemical and biophysical research communications.

[64]  Zhijian J. Chen,et al.  Kinasing and Clipping Down the NF-κB Trail , 2005, Science.

[65]  N. Copeland,et al.  The itchy locus encodes a novel ubiquitin protein ligase that is disrupted in a18H mice , 1998, Nature Genetics.

[66]  T. Mak,et al.  Critical Roles of TRAF2 and TRAF5 in Tumor Necrosis Factor-induced NF-κB Activation and Protection from Cell Death* , 2001, The Journal of Biological Chemistry.

[67]  Hong-Bing Shu,et al.  TRADD–TRAF2 and TRADD–FADD Interactions Define Two Distinct TNF Receptor 1 Signal Transduction Pathways , 1996, Cell.

[68]  Y. Kadono,et al.  Segregation of TRAF6‐mediated signaling pathways clarifies its role in osteoclastogenesis , 2001, The EMBO journal.

[69]  Xiaodong Wang,et al.  TNF-α Induces Two Distinct Caspase-8 Activation Pathways , 2008, Cell.

[70]  B. Lemaître,et al.  Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of rel/NF-kappaB-dependent innate immune responses. , 2001, Genes & development.

[71]  Tom Maniatis,et al.  The ubiquitinproteasome pathway is required for processing the NF-κB1 precursor protein and the activation of NF-κB , 1994, Cell.

[72]  C. Pham,et al.  The NF-κB-mediated control of the JNK cascade in the antagonism of programmed cell death in health and disease , 2006, Cell Death and Differentiation.

[73]  J. Ninomiya-Tsuji,et al.  A Resorcylic Acid Lactone, 5Z-7-Oxozeaenol, Prevents Inflammation by Inhibiting the Catalytic Activity of TAK1 MAPK Kinase Kinase* , 2003, The Journal of Biological Chemistry.

[74]  Michael Karin,et al.  Reactive Oxygen Species Promote TNFα-Induced Death and Sustained JNK Activation by Inhibiting MAP Kinase Phosphatases , 2005, Cell.

[75]  Zhijian J. Chen,et al.  TAK1 is a ubiquitin-dependent kinase of MKK and IKK , 2001, Nature.

[76]  Zhijian J. Chen Ubiquitin signalling in the NF-κB pathway , 2005, Nature Cell Biology.

[77]  N. Copeland,et al.  The E3 ligase Itch negatively regulates inflammatory signaling pathways by controlling the function of the ubiquitin-editing enzyme A20 , 2008, Nature Immunology.

[78]  Zhijian J. Chen,et al.  Activation of the IκB Kinase Complex by TRAF6 Requires a Dimeric Ubiquitin-Conjugating Enzyme Complex and a Unique Polyubiquitin Chain , 2000, Cell.

[79]  Young Chul Park,et al.  All TRAFs are not created equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction. , 2002, Journal of cell science.

[80]  S. Akira,et al.  TAB2 Is Essential for Prevention of Apoptosis in Fetal Liver but Not for Interleukin-1 Signaling , 2003, Molecular and Cellular Biology.

[81]  J. Ashwell,et al.  NEMO recognition of ubiquitinated Bcl10 is required for T cell receptor-mediated NF-κB activation , 2008, Proceedings of the National Academy of Sciences.

[82]  G Cantarella,et al.  Recruitment of the IKK signalosome to the p55 TNF receptor: RIP and A20 bind to NEMO (IKKgamma) upon receptor stimulation. , 2000, Immunity.

[83]  Francesca Zazzeroni,et al.  Induction of gadd45β by NF-κB downregulates pro-apoptotic JNK signalling , 2001, Nature.

[84]  D. Goeddel,et al.  TNF-R1 Signaling: A Beautiful Pathway , 2002, Science.

[85]  Raymond J. Deshaies,et al.  Function and regulation of cullin–RING ubiquitin ligases , 2005, Nature Reviews Molecular Cell Biology.

[86]  Y. Xiong,et al.  A role for NEMO/IKKγ Ubiquitination in the activation of the IκB kinase complex by TNF-α , 2003 .

[87]  Shao-Cong Sun,et al.  Persistent activation of NF-κB by the Tax transforming protein of HTLV-1: hijacking cellular IκB kinases , 1999, Oncogene.

[88]  G. Courtois,et al.  The tumour suppressor CYLD negatively regulates NF-κB signalling by deubiquitination , 2003, Nature.

[89]  Gabriel Núñez,et al.  Intracellular NOD-like receptors in host defense and disease. , 2007, Immunity.

[90]  Matthew T Wheeler,et al.  The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses , 2004, Nature Immunology.

[91]  M. Mann,et al.  Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6 , 2006, Nature.

[92]  Shao-Cong Sun Deubiquitylation and regulation of the immune response , 2008, Nature Reviews Immunology.

[93]  C. Shi,et al.  Tumor Necrosis Factor (TNF)-induced Germinal Center Kinase-related (GCKR) and Stress-activated Protein Kinase (SAPK) Activation Depends upon the E2/E3 Complex Ubc13-Uev1A/TNF Receptor-associated Factor 2 (TRAF2)* , 2003, The Journal of Biological Chemistry.

[94]  A. Hoffmann,et al.  Circuitry of nuclear factor κB signaling , 2006 .

[95]  J. Tschopp,et al.  Induction of TNF Receptor I-Mediated Apoptosis via Two Sequential Signaling Complexes , 2003, Cell.

[96]  S. Miyamoto,et al.  Sequential Modification of NEMO/IKKγ by SUMO-1 and Ubiquitin Mediates NF-κB Activation by Genotoxic Stress , 2003, Cell.

[97]  Pui-Yan Kwok,et al.  Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus , 2008, Nature Genetics.

[98]  Michael Karin,et al.  Activation by IKKα of a Second, Evolutionary Conserved, NF-κB Signaling Pathway , 2001, Science.

[99]  S. Morony,et al.  TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. , 1999, Genes & development.

[100]  David Komander,et al.  Structure of the A20 OTU domain and mechanistic insights into deubiquitination. , 2008, The Biochemical journal.

[101]  René Bernards,et al.  Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB , 2003, Nature.

[102]  A. Shahangian,et al.  Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response , 2006, Nature.

[103]  Michael D. Schneider,et al.  Essential role of TAK1 in thymocyte development and activation. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[104]  Aydin Haririnia,et al.  Solution Conformation of Lys63-linked Di-ubiquitin Chain Provides Clues to Functional Diversity of Polyubiquitin Signaling* , 2004, Journal of Biological Chemistry.

[105]  D. Rawlings,et al.  The CARMA1 signalosome links the signalling machinery of adaptive and innate immunity in lymphocytes , 2006, Nature Reviews Immunology.

[106]  David Baltimore,et al.  Multiple nuclear factors interact with the immunoglobulin enhancer sequences , 1986, Cell.

[107]  E. Harhaj,et al.  Regulation of the NF-κB-inducing Kinase by Tumor Necrosis Factor Receptor-associated Factor 3-induced Degradation* , 2004, Journal of Biological Chemistry.

[108]  S. Akira,et al.  Essential function for the kinase TAK1 in innate and adaptive immune responses , 2005, Nature Immunology.

[109]  K. Jeang,et al.  Inflammatory cardiac valvulitis in TAX1BP1‐deficient mice through selective NF‐κB activation , 2008, The EMBO journal.

[110]  K. Ishii,et al.  Key function for the Ubc13 E2 ubiquitin-conjugating enzyme in immune receptor signaling , 2006, Nature Immunology.

[111]  W. Yeh,et al.  Ubiquitination of RIP1 Regulates an NF-κB-Independent Cell-Death Switch in TNF Signaling , 2007, Current Biology.

[112]  Noula Shembade,et al.  Essential role for TAX1BP1 in the termination of TNF‐α‐, IL‐1‐ and LPS‐mediated NF‐κB and JNK signaling , 2007 .

[113]  J. Ninomiya-Tsuji,et al.  TAK1-binding Protein 1, TAB1, Mediates Osmotic Stress-induced TAK1 Activation but Is Dispensable for TAK1-mediated Cytokine Signaling* , 2008, Journal of Biological Chemistry.

[114]  A. Ashworth,et al.  CYLD is a deubiquitinating enzyme that negatively regulates NF-κB activation by TNFR family members , 2003, Nature.

[115]  Zhaodan Cao,et al.  TRAF6 is a signal transducer for interleukin-1 , 1996, Nature.

[116]  A. Ciechanover,et al.  Dual Effects of IκB Kinase β-Mediated Phosphorylation on p105 Fate: SCFβ-TrCP-Dependent Degradation and SCFβ-TrCP-Independent Processing , 2004, Molecular and Cellular Biology.

[117]  Zhijian J. Chen,et al.  TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains. , 2004, Molecular cell.

[118]  T. Mak,et al.  Activation of noncanonical NF-κB requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2, TRAF3 and the kinase NIK , 2008, Nature Immunology.

[119]  Vishva M. Dixit,et al.  IAP Antagonists Induce Autoubiquitination of c-IAPs, NF-κB Activation, and TNFα-Dependent Apoptosis , 2007, Cell.

[120]  Y. You,et al.  Ubiquitination of RIP Is Required for Tumor Necrosis Factor α-induced NF-κB Activation* , 2006, Journal of Biological Chemistry.

[121]  A. Amerik,et al.  Mechanism and function of deubiquitinating enzymes. , 2004, Biochimica et biophysica acta.

[122]  D. Goeddel,et al.  Early lethality, functional NF-kappaB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. , 1997, Immunity.

[123]  L. Cantley,et al.  The Crohn's Disease Protein, NOD2, Requires RIP2 in Order to Induce Ubiquitinylation of a Novel Site on NEMO , 2004, Current Biology.

[124]  A. Israël NF-κB activation: nondegradative ubiquitination implicates NEMO , 2006 .

[125]  M. Pagano,et al.  Deregulated proteolysis by the F-box proteins SKP2 and β-TrCP: tipping the scales of cancer , 2008, Nature Reviews Cancer.

[126]  Shao-Cong Sun,et al.  An Atypical Tumor Necrosis Factor (TNF) Receptor-associated Factor-binding Motif of B Cell-activating Factor Belonging to the TNF Family (BAFF) Receptor Mediates Induction of the Noncanonical NF-κB Signaling Pathway* , 2005, Journal of Biological Chemistry.

[127]  David Baltimore,et al.  Two Pathways to NF-κB , 2002 .

[128]  P. Lucas,et al.  A critical role of RICK/RIP2 polyubiquitination in Nod‐induced NF‐κB activation , 2008 .

[129]  T. Maniatis,et al.  Site-Specific Phosphorylation of IκBα by a Novel Ubiquitination-Dependent Protein Kinase Activity , 1996, Cell.

[130]  Avram Hershko,et al.  Ubiquitin: Roles in protein modification and breakdown , 1983, Cell.

[131]  Sakae Tanaka,et al.  Severe osteopetrosis, defective interleukin‐1 signalling and lymph node organogenesis in TRAF6‐deficient mice , 1999, Genes to cells : devoted to molecular & cellular mechanisms.

[132]  S. Srinivasula,et al.  IAPs: what's in a name? , 2008, Molecular cell.

[133]  J. Tschopp,et al.  Recruitment of TNF Receptor 1 to Lipid Rafts Is Essential for TNFα-Mediated NF-κB Activation , 2003 .

[134]  S. Srinivasula,et al.  Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-κB activation , 2006, Nature Cell Biology.

[135]  S. Elsasser,et al.  Delivery of ubiquitinated substrates to protein-unfolding machines , 2005, Nature Cell Biology.

[136]  Zhijian J. Chen,et al.  TRAF2: A Double-Edged Sword? , 2005, Science's STKE.

[137]  Gabriel Pineda,et al.  Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. , 2006, Molecular cell.

[138]  Zhijian J. Chen,et al.  The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. , 2004, Molecular cell.

[139]  S. Ghosh,et al.  A glycine-rich region in NF-kappaB p105 functions as a processing signal for the generation of the p50 subunit , 1996, Molecular and cellular biology.

[140]  Mike Rothe,et al.  The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins , 1995, Cell.

[141]  A. Krikos,et al.  Transcriptional activation of the tumor necrosis factor alpha-inducible zinc finger protein, A20, is mediated by kappa B elements. , 1992, The Journal of biological chemistry.

[142]  E. Pietras,et al.  A Deubiquitinase That Regulates Type I Interferon Production , 2007, Science.

[143]  J. Keats,et al.  Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-κB signaling , 2008, Nature Immunology.

[144]  T. Maniatis,et al.  Immune Activation of NF-κB and JNK Requires Drosophila TAK1* , 2003, Journal of Biological Chemistry.

[145]  Chunying Du,et al.  Smac/DIABLO Selectively Reduces the Levels of c-IAP1 and c-IAP2 but Not That of XIAP and Livin in HeLa Cells* , 2004, Journal of Biological Chemistry.

[146]  D. Goeddel,et al.  T6BP, a TRAF6-interacting protein involved in IL-1 signaling. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[147]  C. Pickart,et al.  Mechanisms underlying ubiquitination. , 2001, Annual review of biochemistry.

[148]  Ki-Young Lee,et al.  TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. , 2005, Genes & development.

[149]  Seda Çöl Arslan,et al.  Malt1 ubiquitination triggers NF‐κB signaling upon T‐cell activation , 2007 .