Statistical Estimation of High-Dimensional Vector Autoregressive Models

High-dimensional vector autoregressive (VAR) models are important tools for the analysis of multivariate time series. This paper focuses on high-dimensional time series and on the different regularized estimation procedures proposed for fitting sparse VAR models to such time series. Attention is paid to the different sparsity assumptions imposed on the VAR parameters and how these sparsity assumptions are related to the particular consistency properties of the estimators established. A sparsity scheme for high-dimensional VAR models is proposed which is found to be more appropriate for the time series setting considered. Furthermore, it is shown that, under this sparsity setting, threholding extents the consistency properties of regularized estimators to a wide range of matrix norms. Among other things, this enables application of the VAR parameters estimators to different inference problems, like forecasting or estimating the second-order characteristics of the underlying VAR process. Extensive simulations compare the finite sample behavior of the different regularized estimators proposed using a variety of performance criteria.

[1]  J. Bai,et al.  Large Dimensional Factor Analysis , 2008 .

[2]  Richard A. Davis,et al.  Time Series: Theory and Methods (2nd ed.). , 1992 .

[3]  Richard A. Davis,et al.  Sparse Vector Autoregressive Modeling , 2012, 1207.0520.

[4]  G. Michailidis,et al.  Regularized estimation in sparse high-dimensional time series models , 2013, 1311.4175.

[5]  Ruey S. Tsay,et al.  Multivariate Time Series Analysis: With R and Financial Applications , 2013 .

[6]  Helmut Ltkepohl,et al.  New Introduction to Multiple Time Series Analysis , 2007 .

[7]  Mark W. Watson,et al.  Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics , 2016 .

[8]  Michael P. Clements,et al.  Dynamic Factor Models , 2011, Financial Econometrics.

[9]  E. Paparoditis,et al.  Bootstrap based inference for sparse high-dimensional time series models , 2018, Bernoulli.

[10]  Fang Han,et al.  A direct estimation of high dimensional stationary vector autoregressions , 2013, J. Mach. Learn. Res..

[11]  Harrison H. Zhou,et al.  Estimating Sparse Precision Matrix: Optimal Rates of Convergence and Adaptive Estimation , 2012, 1212.2882.

[12]  Adam J. Rothman,et al.  Generalized Thresholding of Large Covariance Matrices , 2009 .

[13]  L. Kilian,et al.  Structural Vector Autoregressive Analysis , 2017 .

[14]  Weidong Liu,et al.  Adaptive Thresholding for Sparse Covariance Matrix Estimation , 2011, 1102.2237.

[15]  Y. Wu,et al.  Performance bounds for parameter estimates of high-dimensional linear models with correlated errors , 2016 .

[16]  G. Reinsel Elements of Multivariate Time Series Analysis , 1995 .

[17]  R. Mazumder,et al.  Computing Estimators of Dantzig Selector type via Column and Constraint Generation , 2019, 1908.06515.

[18]  T. Cai,et al.  A Constrained ℓ1 Minimization Approach to Sparse Precision Matrix Estimation , 2011, 1102.2233.

[19]  P. Bickel,et al.  Covariance regularization by thresholding , 2009, 0901.3079.

[20]  Trevor Hastie,et al.  Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent. , 2011, Journal of statistical software.

[21]  Ricardo P. Masini,et al.  Regularized estimation of high‐dimensional vector autoregressions with weakly dependent innovations , 2019, Journal of Time Series Analysis.

[22]  Okyoung Na,et al.  Tuning parameter selection for the adaptive LASSO in the autoregressive model , 2017 .

[23]  Terence Tao,et al.  The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.

[24]  A. Kock,et al.  Oracle Inequalities for High Dimensional Vector Autoregressions , 2012, 1311.0811.